[1]STAUFFER C, GRIMSON W E L. Adaptive background mixture models for real-time tracking [C]// Proceeding of the 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 1999,2:246-253.
[2]MITTAL A, PARAGIOS N. Motion-based background subtraction using adaptive kernel density estimation [C]// Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2004,2:302-309.
[3]MATSUYAMA T, OHYA T, HABE H. Background subtraction for non-stationary scenes [C]// Proceeding of the 2000 Asian Conference of Computer Vision. Berlin: Springer-Verlag, 2000:662-667.
[4]KIM K, CHALIDABHONGSE T, HARWOOD D, et al.Real-time foreground-background segmentation using codebook model [J]. Real-time Imaging, 2005,11(3):172-185.
[5]RITTSCHER J, KATO J, JOGA S, et al.A probabilistic back-ground model for tracking [C]// Proceedings of the 2000 European Conference Computer Vision, LNCS 6312. Berlin: Springer-Verlag, 2000:336-350.
[6]ZHONG J, SCLAROFF S. Segmenting foreground objects from a dynamic textured background via a robust Kalman filter [C]// Proceedings of the 2003 IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2003:44-50.
[7]TIAN Y, TIAN S, XU Y, et al.Image object detection based on local feature and sparse representation [J]. Journal of Computer Applications, 2013,33(6):1670-1673.(田元荣,田松,许悦雷,等. 基于局部特征和稀疏表示的图像目标检测算法[J]. 计算机应用,2013,33(6):1670-1673.)
[8]BENGIO Y, LAMBLIN P, POPOVICI D, et al.Greedy layer-wise training of deep networks [C]// Proceedings of the 20th Annual Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2007:153-160.
[9]HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006,18(7):1527-1554.
[10]VINCENT P, LAROCHELLE H, BENGIO Y, et al.Extracting and composing robust features with denoising autoencoders [C]// Proceedings of the 25th International Conference on Machine Learning. New York: ACM, 2008:1096-1103.
[11]YUAN F. Codebook generation based on self-organizing incremental neural network for image classification [J]. Journal of Computer Applications, 2013,33(7):1976-1979.(袁飞云. 基于自组织增量神经网络的码书产生方法在图像分类中的应用[J]. 计算机应用,2013,33(7):1976-1979.)
[12]OUYANG W, WANG X. Joint deep learning for pedestrian detection [C]// Proceeding of the 2013 IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2013:2056-2063.
[13]LE Q V, ZOU W Y, YEUNG S Y, et al.Learning hierarchical invariant spatiotemporal features for action recognition with independent subspace analysis [C]// Proceeding of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2011:3361-3368.
[14]TAYLOR G W, HINTON G E, ROWEIS S T. Modeling human motion using binary latent vairiables [C]// Proceedings of the 20th Annual Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2007:1345-1353.
[15]HEESS N, ROUX N L, WINN J. Weakly supervised learning of background segmentation using masked RBMs [C]// International Conference on Artificial Neural Networks, LNCS 6312. Berlin: Springer-Verlag, 2011:9-16.
[16]ZHAO C, WANG X, CHAM W K. Background subtraction via robust dictionary learning [EB/OL]. [2014-02-22]. http://www.docin.com/p-233234564.html
[17]HUANG J, HUANG X, METAXAS D N. Learning with dynamic group sparsity [C]// Proceeding of the 2009 IEEE International Conference of Computer Vision. Piscataway: IEEE Press, 2009:64-71.
[18]LU C, SHI J, JIA J. Online robust dictionary learning [C]// Proceeding of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Piscataway: IEEE Press, 2013:415-422.
[19]CEVHER V, SANKARANARAYANAN A, DUARTE M, et al.〖WTBZ〗 Compressive sensing background subtraction [C]// Proceedings of the 2008 European Conference on Computer Vision, LNCS 6312. Berlin: Springer-Verlag, 2008:155-168.
[20]XU J, DANIEL W C H. A new training and pruning algorithm based on node dependence and Jacobian rank deficiency [J]. Neurocomputing, 2006,70(1/2/3):544-558.
[21]LI L, HUANG W, GU I, et al.Statistical modeling of complex backgrounds for foreground object detecting [J]. IEEE Transactions on Image Processing, 2004,13(11):1459-1472.
[22]ZHOU X, YANG C, YU W. Moving object detection by detecting contiguous outliers in the low-rank representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(3):597-610.
[23]STAUFFER C, GRIMSON W. Adaptive background mixture models for real-time tracking [C]// Proceeding of the 1999 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 1999:2246-2252.
[24]GUTCHESS D, TRAJKOVICS M, COHEN-SOLAL E, et al.A background model initialization algorithm for video surveillance [C]// Proceeding of the 2001 8th IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2001:733-740.
[25]CANDES E, LI X, MA Y, et al.Robust principal component analysis? [EB/OL]. [2014-02-01]. http://wenku.baidu.com/view/95964f3243323968011c9261.html. |