[1]WRIGHT J, YANG A Y, GANESH A, et al.Robust face recognition via sparse representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
[2]LI C G, GUO J, ZHANG H G. Local sparse representation based classification [C]// ICPR 2010: Proceedings of the 20th International Conference on Pattern Recognition. Piscataway: IEEE, 2010: 649-652.
[3]HUANG J B, YANG M H. Fast sparse representation with prototypes [C]// CVPR 2010: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2010: 3618-3625.
[4]YANG M, ZHANG L, YANG J, et al.Robust sparse coding for face recognition [C]// CVPR 2011: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2011: 625-632.
[5]YANG M, ZHANG L. Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary [M]// Computer Vision — ECCV 2010: Proceedings of the 11th European Conference on Computer Vision, LNCS 6316. Berlin: Springer-Verlag, 2010: 448-461.
[6]ZHANG N, JIAN Y. K nearest neighbor based local sparse representation classifier [C]// Proceedings of the 2010 Chinese Conference on Pattern Recognition. Piscataway: IEEE, 2010: 1-5.
[7]DUAN G, WEI L, LI N. Adaptive weighted multiple sparse representation classification approach [J]. Computer Engineering and Applications [2013-12-13]. http://www.cnki.net/kcms/detail/11.2127.TP.20120816.1045.019.html. (段刚龙, 魏龙, 李妮.基于自适应权重的多重稀疏表示分类算法[J/OL].计算机工程与应用【 [2013-12-13]. http://www.cnki.net/kcms/detail/11.2127.TP.20120816.1045.019.html.)
[8]WRIGHT J, YANG A Y, GANESH A, et al.Robust face recognition via sparse representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
[9]RIGAMONTI R, BROWN M A, LEPETIT V. Are sparse representations really relevant for image classification? [C]// Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2011: 1545-1552.
[10]SHI Q, ERIKSSON A, van den HENGEL A, et al.Is face recognition really a compressive sensing problem? [C]// Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2011: 553-560.
[11]ZHANG L, YANG M, FENG X. Sparse representation or collaborative representation: Which helps face recognition? [C]// Proceedings of the 2011 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2011: 471-478.
[12]BARANIUK R G. Compressive sensing [lecture notes] [J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
[13]YANG M, ZHANG L, ZHANG D, et al.Relaxed collaborative representation for pattern classification [C]// Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 2224-2231.
[14]DONOHO D L, TSAIG Y. Fast solution of l1-norm minimization problems when the solution may be sparse [R/OL]. Stanford: Stanford University, Department of Statistics (2006-10-05) [2013-05-15]. http://statweb.stanford.edu/~donoho/Reports/2006/kstep-20061005.pdf.
[15]GAO Z, XIONG C, DA B. Improved face recognition based on sparse representation with weighted residuals [J]. Journal of South-Central University for Nationalities: Nature Science Edition, 2012, 31(3): 76-80.(高志荣,熊承义,笪邦友.改进的基于残差加权的稀疏表示人脸识别[J].中南民族大学学报:自然科学版,2012,31(3):76-80.) |