[1]AN S, PEURSUM P, LIU W, et al.Efficient algorithms for subwindow search in object detection and localization [C]// CVPR 2009: Proceedings of the 2009 IEEE Conference on Computer Vision and Patter Recognition. Piscataway: IEEE, 2009: 264-271.
[2]TIAN Y, TIAN S, XU Y, et al.Image object detection based on local feature and sparse representation [J]. Journal of Computer Applications, 2013, 33(6): 1670-1673. (田元荣,田松,许悦雷,等.基于局部特征和稀疏表示的图像目标检测算法[J].计算机应用,2013,33(6): 1670-1673.)
[3]YUAN F. Codebook generation based on self-organizing incremental neural network for image classification [J]. Journal of Computer Applications, 2013, 33(7): 1976-1979. (袁飞云.基于自组织增量神经网络的码书产生方法在图像分类中的应用[J].计算机应用,2013,33(7): 1976-1979.)
[4]LEHMANN A, LEIBE B, GOOL L. Feature centric efficient subwindow search [C]// CVPR 2009: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 940-947.
[5]MUTCH J, LOWE D G, Multiclass object recognition with sparse, localized features [C]// CVPR 2006: Proceedings of the 2006 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2006: 11-18.
[6]BRUNELLI R. Template matching techniques in computer vision: theory and practice [M]. Hoboken: John Wiley and Sons, 2009.
[7]SHECHTMAN E, IRANI M. Matching local self similarities across images and videos [C]// CVPR 2007: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2007: 1-8.
[8]SIBIRYAKOV A. Fast and high-performance template matchingmethods [C]// CVPR 2008: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2008: 1-8.
[9]SEO H J, MILANFAR P. Training-free, generic object detection using locally adaptive regression kernels [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1688-1704.
[10]XU P, YE M, LI X, et al.Object detection using voting spaces trained by few samples [J]. Optical Engineering, 2013, 52(9): 093105.
[11]XU P, YE M. FU M, et al.Object detection based on several samples with training Hough spaces [C]// CCPR 2012: Chinese Conference of Pattern Recognition, CCIS 321. Berlin: Springer-Verlag, 2012: 235-242.
[12]DALAL N, TRIGGS B. Histograms of oriented gradients for human detection [C]// CVPR 2005: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2005: 1-8.
[13]FELZENSZWALB P, MCALLESTER D, RAMANAN D. A discriminatively trained, multiscale, deformable part model [C]// CVPR 2008: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2008: 1-8.
[14]TANG D, LIU Y, KIN T-K. Fast pedestrian detection by cascaded random forest with dominant orientation templates [C]// BMVC 2012: Proceedings of the 2012 British Machine Vision Conference. Nottingham: BMVA Press, 2012: 1-11.
[15]PELE O, WERMAN M. The quadratic-chi histogram distance family [C]// ECCV 2010: Proceedings of the 2010 European Conference on Computer Vision, LNCS 6312. Berlin: Springer-Verlag, 2010: 749-762.
[16]RAZAVI N, GALL J, GOOL L. Scalable multi-class object detection [C]// CVPR2011: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2011: 1505-1512.
[17]ZHANG Y, CHEN T. Weakly supervised object recognition and localization with invariant high order features [C]// BMVC 2010: Proceedings of the 2010 British Machine Vision Conference. Nottingham: BMVA Press, 2010: 47.1-47.11.
[18]GODEC M, ROTH P M, BISCHOF H. Hough-based tracking of non-rigid objects [C]// CVPR 2011: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2011: 81-88.
[19]BALUJA H, KANADE T. Neural network based face detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(1): 22-38.
[20]AGARWAL S, AWAN A, ROTH D. Learning to detection objects in images via a sparse, part-based representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(11): 1475-1490.
[21]KAPPOR A, WINN J. Located hidden random fields: learning discriminative parts for object detection [C]// ECCV 2006: Proceedings of the 2006 European Conference on Computer Vision, LNCS 3953. Berlin: Springer-Verlag, 2006: 302-315. |