[1]TEMPLE K. What happens in an Internet minute? [EB/OL].(2012-03-13) [2013-05-15]. http://scoop.intel.com/what-happens-in-an-internet-minute/.
[2]How many photos are uploaded to Flickr every day, month, year? [EB/OL]. (2012-03-20) [2013-06-05]. http://www.flickr.com/photos/franckmichel/6855169886/.
[3]SMEULDERS A W M, WORRING M, SANTINI S, et al.Content-based image retrieval at the end of the early years [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 22(12): 1349-1380.
[4]LEW M S, SEBE N, DJERABA C, et al.Content-based multimedia information retrieval: state of the art and challenges [J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2011,2(1):1-19.
[5]DATTA R, JOSHI D, LI J, et al.Image retrieval: Ideas, influences, and trends of the new age [J]. ACM Computing Surveys,2008, 40(2): Article No. 5.
[6]TinEye. TinEye Reverse Image Search [EB/OL]. [2013-02-14]. http://www.tineye.com/.
[7]Google. Google Images [EB/OL]. [2013-02-14] http://images.google.com/.
[8]HAAS J P, HUESKE F, MARKL V. Detecting attribute dependencies from query feedback [C]// VLDB '07: Proceedings of the 33rd International Conference on Very Large Data Bases. Toronto: VLDB Endowment, 2007: 830-841.
[9]WANG J, POHLMEYER E, HANNA B, et al.Brain state decoding for rapid image retrieval [C]// MM '09: Proceedings of the 17th ACM International Conference on Multimedia. New York: ACM, 2009: 945-954.
[10]ZHU Z, ZHAO C, HOU Y, et al.Rotation-invariant texture image retrieval based on multi-feature [J]. Journal of Nanjing University of Science and Technology: Natural Science Edition, 2012, 36(3): 375-380. (朱正礼,赵春霞,侯迎坤,等.基于多特征的旋转不变纹理图像检索[J].南京理工大学学报:自然科学版,2012,36(3):375-380.)
[11]SIVIC J, ZISSERMAN A. Video Google: a text retrieval approach to object matching in videos [C]// ICCV '03: Proceedings of the Ninth IEEE International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2003: 1470-1477.
[12]PHILBIN J, CHUM O, ISARD M, et al.Lost in quantization: Improving particular object retrieval in large scale image databases [C]// CVPR 2008: Proceedings of the 2008 Computer Vision and Pattern Recognition. Piscataway: IEEE, 2008:1-8.
[13]JEGOU H, DOUZE M, SCHMID C. Hamming embedding andweak geometric consistency for large scale image search [C]// ECCV 2008: Proceedings of the 10th European Conference on Computer Vision: Part I, LNCS 5302. Berlin: Springer-Verlag, 2008:304-317.
[14]JEGOU H, DOUZE M, SCHMID C. Improving bag-of-features for large scale image search [J]. International Journal of Computer Vision, 2013,87(3):316-336.
[15]NISTER D, STEWENIUS H. Scalable recognition with a vocabulary tree [C]// CCVPR 2006: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2006: 2161-2168.
[16]JURIE F, TRIGGS B. Creating efficient codebooks for visual recognition [C]// ICCV 2005: Proceedings of the 2005 Tenth IEEE International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2005:604-610.
[17]JI R, YAO H, XIE X, et al.Vocabulary hierarchy optimization and transfer for scalable image search [J]. IEEE Multimedia, 2012, 18(3): 66-77.
[18]DENG J, DONG W, SOCHER R, et al.ImageNet: a large-scale hierarchical image database [C]// CVPR 2009: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009:248-255.
[19]Image-Net Large Scale Visual Recognition Challenge 2011(ILSVRC2011) [EB/OL].[2013-04-23]. http://www.image-net.org/challenges/LSVRC/2011/. |