Journal of Computer Applications ›› 2016, Vol. 36 ›› Issue (1): 39-43.DOI: 10.11772/j.issn.1001-9081.2016.01.0039

Previous Articles     Next Articles

Moving object location prediction algorithm based on Markov model and trajectory similarity

SONG Lujie, MENG Fanrong, YUAN Guan   

  1. School of Computer Science and Technology, China University of Mining and Technology, Xuzhou Jiangsu 221116, China
  • Received:2015-08-27 Revised:2015-09-22 Online:2016-01-10 Published:2016-01-09
  • Supported by:
    This work is partially supported by the National High Technology Research and Development Program (863 Program) of China (2012AA011004), the Fundamental Research Funds for the Central Universities (2013XK10), the Coal Joint Funds of the National Natural Science Foundation of China (U1261201).

基于Markov模型与轨迹相似度的移动对象位置预测算法

宋路杰, 孟凡荣, 袁冠   

  1. 中国矿业大学 计算机科学与技术学院, 江苏 徐州 221116
  • 通讯作者: 宋路杰(1990-),男,河南永城人,硕士研究生,主要研究方向:数据挖掘、轨迹预测
  • 作者简介:孟凡荣(1962-),女,辽宁沈阳人,教授,博士,主要研究方向:数据库、数据挖掘;袁冠(1982-),男,江苏徐州人,副教授,博士,主要研究方向:数据挖掘、知识工程。
  • 基金资助:
    国家863计划项目(2012AA011004);中央高校基本科研业务费专项资金资助项目(2013XK10);国家自然科学基金煤炭联合基金重点项目(U1261201)。

Abstract: Focusing on low prediction accuracy of the low-order Markov model and high sparsity rate of the high-order Markov model, a moving object location prediction algorithm based on Markov Model and Trajectory Similarity (MMTS) was proposed. The moving object's historical trajectory was modeled by using Markov thinking, and trajectory similarity was acted as an important factor of location prediction. With the result set predicted by Markov model as candidate set, the trajectory similarity factor was combined to get the final prediction. The experimental results show that, compared with the k-order Markov model, the predictive capability of the MMTS method is not greatly affected with the change of training sample size and the value of k, and the average accuracy is improved by more than 8% while significantly reducing the sparsity rate of k-order Markov model. So, the proposed method not only solves the problem of high sparsity rate and low prediction accuracy of the k-order Markov model, but also improves the stability of prediction.

Key words: trajectory similarity, location prediction, moving object, Markov model, sparsity

摘要: 针对低阶Markov模型预测精度较差,以及多阶Markov模型预测稀疏率高的问题,提出一种基于Markov模型与轨迹相似度(MMTS)的移动对象位置预测算法。该方法借鉴了Markov模型思想对移动对象的历史轨迹进行建模,并将轨迹相似度作为位置预测的重要因素,以Markov预测模型的预测结果集作为预测候选集,结合相似度因素得出最终预测结果。实验结果表明,与k阶Markov模型相比,该方法的预测性能不会随着训练样本大小及阶数k的变化受到很大的影响,并且在大幅降低k阶Markov模型预测稀疏率的同时将预测精度平均提高了8%以上。所提方法不仅解决了k阶Markov模型的预测稀疏率高及预测精度不足的问题;同时提高了预测的稳定性。

关键词: 轨迹相似度, 位置预测, 移动对象, 马尔可夫模型, 稀疏性

CLC Number: