1 LI L , HANSMAN R J , PALACIOS R , et al . Anomaly detection via a Gaussian mixture model for flight operation and safety monitoring[J]. Transportation Research Part C: Emerging Technologies, 2016, 64: 45-57.
2 CAO Y , LI Y , COLEMAN S , et al . Adaptive hidden Markov model with anomaly states for price manipulation detection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(2): 318-330.
3 ZHANG C , CHEN Y , YIN A , et al . Anomaly detection in ECG based on trend symbolic aggregate approximation[J]. Mathematical Biosciences and Engineering, 2019, 16(4): 2154-2167.
4 RABINER L R . A tutorial on hidden Markov models and selected applications in speech recognition[J]. Proceedings of the IEEE, 1989, 77(2): 257-286.
5 孙群丽,刘长良,甄成刚 . 隐马尔科夫模型在滚动轴承故障诊断中的应用[J]. 热能动力工程, 2018, 33(10):95-100. (SUN Q L, LIU C L, ZHEN C G. Application of hidden Markov model in fault diagnosis of rolling bearing[J]. Journal of Engineering for Thermal Energy and Power, 2018, 33(10):95-100.)
6 刘子豪,李凌,叶枫 . 基于SparkR的水文传感器数据的异常检测方法[J]. 计算机应用, 2019, 39(2): 436-440. (LIU Z H, LI L, YE F. Anomaly detection method for hydrologic sensor data based on SparkR[J]. Journal of Computer Applications, 2019, 39(2): 436-440.)
7 SONG C , LIU K , ZHANG X , et al . An obstructive sleep apnea detection approach using a discriminative hidden Markov model from ECG signals[J]. IEEE Transactions on Biomedical Engineering, 2016, 63(7): 1532-1542.
8 KEYGHOBADI H , SEYEDIN A . Abnormality detection in a landing operation using hidden Markov model[J]. Journal of Computer and Robotics, 2017, 10(1): 31-37.
9 杨慧,毛好好,霍纬纲 . 聚类HMM模型在QAR数据分析中的应用研究[J]. 计算机应用与软件, 2018, 35(1): 85-91. (YANG H, MAO H H, HUO W G. The application of clustering HMM model in QAR data analysis[J]. Computer Applications and Software, 2018, 35(1): 85-91.)
10 LI J , PEDRYCZ W , JAMAL I . Multivariate time series anomaly detection: a framework of hidden Markov models[J]. Applied Soft Computing, 2017, 60: 229-240.
11 谭宏强,牛强 . 基于滑动窗口及局部特征的时间序列符号化方法[J]. 计算机应用研究, 2013, 30(3): 796-798. (TAN H Q, NIU Q. Symbolic representation algorithm for time series based on sliding window and local features[J]. Application Research of Computers, 2013, 30(3): 796-798.)
12 JIA Y , XU M , WANG R . Symbolic important point perceptually and hidden Markov model based hydraulic pump fault diagnosis method[J]. Sensors, 2018, 18(12): No.4460.
13 FU T C , HUNG Y K , CHUNG F L . Improvement algorithms of perceptually important point identification for time series data mining[C]// Proceedings of the IEEE 4th International Conference on Soft Computing and Machine Intelligence. Piscataway: IEEE, 2017: 11-15.
14 ZEGEYE W K , DEAN R A , MOAZZAMI F . Multi-layer hidden Markov model based intrusion detection system[J]. Machine Learning and Knowledge Extraction, 2019, 1(1): 265-286.
15 FARSAD N , RAO M , GOLDSMITH A . Deep learning for joint source-channel coding of text[C]// Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2018: 2326-2330.
16 廖俊,周中良,寇英信,等 . 一种基于重要点的时间序列分割方法[J]. 计算机工程与应用, 2011, 47(24): 166-170. LIAO J , ZHOU Z L , KOU Y X , et al . Method for time series segment based on important point[J]. Computer Engineering and Applications, 2011, 47(24): 166-170.
17 吴晓婕,胡占义,吴毅红 . 基于Segmental-DTW的无监督行为序列分割[J]. 软件学报, 2008, 19(9):2285-2292. (WU X J, HU Z Y, WU Y H. Unsupervised behavior sequence segmentation based on Segmental-DTW[J]. Journal of Software, 2008, 19(9):2285-2292.)
18 LEKHA S , SUCHETHA M . Real-time non-invasive detection and classification of diabetes using modified convolution neural network[J]. IEEE Journal of Biomedical and Health Informatics, 2018, 22(5): 1630-1636.
19 SAKURADA M , YAIRI T . Anomaly detection using autoencoders with nonlinear dimensionality reduction[C]// Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis. New York: ACM, 2014: 4-11. |