[1] ZHU Z Y, DONG S J, YU C L, et al. A text hybrid clustering algorithm based on HowNet semantics[J]. Key Engineering Materials, 2011, 474/475/476:2071-2078. [2] TABOADA M, BROOKE J, TOFILOSKI M, et al. Lexicon-based methods for sentiment analysis[J]. Computational Linguistics, 2011, 37(2):267-307. [3] 李婷婷, 姬东鸿. 基于SVM和CRF多特征组合的微博情感分析[J]. 计算机应用研究, 2015, 32(4):978-981.(LI T T, JI D H. Sentiment analysis of micro-blog based on SVM and CRF using various combinations of features[J]. Application Research of Computers, 2015, 32(4):978-981.) [4] PU X J, WU G S, YUAN C F. Exploring overall opinions for document level sentiment classification with structural SVM[J]. Multimedia Systems, 2019, 25(1):21-33. [5] WANG X, LIU Y C, SUN C J, et al. Predicting polarities of tweets by composing word embeddings with long short-term memory[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics/the 7th International Joint Conference on Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2015:1343-1353. [6] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2014:1746-1751. [7] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. (2013-09-07)[2020-09-10]. https://arxiv.org/pdf/1301.3781.pdf. [8] PENNINGTON J, SOCHER R, MANNING C D. GloVe:global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2014:1532-1543. [9] PALTOGLOU G, THELWALL M. Twitter, MySpace, Digg:unsupervised sentiment analysis in social media[J]. ACM Transactions on Intelligent Systems and Technology, 2012, 3(4):No. 66. [10] QIU G, HE X F, ZHANG F, et al. DASA:dissatisfactionoriented advertising based on sentiment analysis[J]. Expert Systems with Applications, 2010, 37(9):6182-6191. [11] JIANG L, YU M, ZHOU M, et al. Target-dependent twitter sentiment classification[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg, PA:Association for Computational Linguistics, 2011:151-160. [12] PANG B, LEE L, VAITHYANATHAN S. Thumbs up? Sentiment classification using machine learning[C]//Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2002:79-86. [13] TANG D Y, WEI F R, QIN B, et al. Coooolll:a deep learning system for twitter sentiment classification[C]//Proceedings of the 8th International Workshop on Semantic Evaluation. Stroudsburg, PA:Association for Computational Linguistics, 2014:208-212. [14] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507. [15] BENGIO Y, DUCHARME R, VINCENT P, et al. A neural probabilistic language model[J]. Journal of Machine Learning Research, 2003, 3:1137-1155. [16] PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg, PA:Association for Computational Linguistics, 2018, 1:2227-2237. [17] 赵亚欧, 张家重, 李贻斌, 等. 融合基于语言模型的词嵌入和多尺度卷积神经网络的情感分析[J]. 计算机应用, 2020, 40(3):651-657.(ZHAO Y O, ZHANG J Z, LI Y B, et al. Sentiment analysis using embedding from language model and multi-scale convolutional neural networks[J]. Journal of Computer Applications, 2020, 40(3):651-657.) [18] 赵富, 杨洋, 蒋瑞, 等. 融合词性的双注意力Bi-LSTM情感分析[J]. 计算机应用, 2018, 38(S2):103-106, 147.(ZHAO F, YANG Y, JIANG R, et al. Sentiment analysis based on doubleattention Bi-LSTM using part-of-speech[J]. Journal of Computer Applications, 2018, 38(S2):103-106, 147.) [19] 胡荣磊, 芮璐, 齐筱, 等. 基于循环神经网络和注意力模型的文本情感分析[J]. 计算机应用研究, 2019, 36(11):3282-3285. (HU R L, RUI L, QI X, et al. Text sentiment analysis based on recurrent neural networks and attention model[J]. Application Research of Computers, 2019, 36(11):3282-3285.) |