[1] 李勇敢, 周学广, 孙艳, 等. 中文微博情感分析研究与实现[J]. 软件学报, 2017, 28(12):3183-3205.(LI Y G, ZHOU X G, SUN Y, et al. Research and implementation of Chinese Microblog sentiment classification[J]. Journal of Software, 2017, 28(12):3183-3205.) [2] 黄发良, 冯时, 王大玲, 等. 基于多特征融合的微博主题情感挖掘[J]. 计算机学报, 2017, 40(4):872-888.(HUANG F L, FENG S, WANG D L, et al. Mining topic sentiment in microblogging based on multi-feature fusion[J]. Chinese Journal of Computers, 2017, 40(4):872-888.) [3] MUKHERJEE A, LIU B. Aspect extraction through semisupervised modeling[C]//Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2012, 1:339-348. [4] 廖健. 基于表示学习的事实型隐式情感分析研究[D]. 太原:山西大学, 2018:1-138. (LIAO J. Research on fact-implied implicit sentiment analysis based on representation learning[D]. Taiyuan:Shanxi University, 2018:1-138.) [5] 江腾蛟, 万常选, 刘德喜, 等. 基于语义分析的评价对象-情感词对抽取[J]. 计算机学报, 2017, 40(3):617-633.(JIANG T J, WAN C X, LIU D X, et al. Extracting target-opinion pairs based on semantic analysis[J]. Chinese Journal of Computers, 2017, 40(3):617-633.) [6] CHEN H Y, CHEN H H. Implicit polarity and implicit aspect recognition in opinion mining[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2016, 2:20-25. [7] LIU B, ZHANG L. A survey of opinion mining and sentiment analysis[M]//AGGARWAL C C, ZHAI C X. Mining Text Data. Boston, MA:Springer, 2012:415-463. [8] 李然, 林政, 林海伦, 等. 文本情绪分析综述[J]. 计算机研究与发展, 2018, 55(1):30-52.(LI R, LIN Z, LIN H L, et al. Text emotion analysis:a survey[J]. Journal of Computer Research and Development, 2018, 55(1):30-52.) [9] WANG H, LIU B, LI C Z, et al. Learning with noisy labels for sentence-level sentiment classification[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing/the 9th International Joint Conference on Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2019:6286-6292. [10] 任飞亮, 沈继坤, 孙宾宾, 等. 从文本中构建领域本体技术综述[J]. 计算机学报, 2019, 42(3):654-676.(REN F L, SHEN J K, SUN B B, et al. A review for domain ontology construction from text[J]. Chinese Journal of Computers, 2019, 42(3):654-676.) [11] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6):1229-1251.(ZHOU F Y, JIN L P, DONG J. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6):1229-1251.) [12] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2014:1746-1751. [13] ZHANG Y, WALLACE B. A sensitivity analysis of (and practitioners'guide to)convolutional neural networks for sentence classification[C]//Proceedings of the 8th International Joint Conference on Natural Language Processing.[S. l.]:Asian Federation of Natural Language Processing, 2017, 1:253-263. [14] DAUPHIN Y N, FAN A, AULI M, et al. Language modeling with gated convolutional networks[C]//Proceedings of the 34th International Conference on Machine Learning. New York:JMLR. org, 2017:933-941. [15] WANG X, LIU Y C, SUN C J, et al. Predicting polarities of tweets by composing word embeddings with long short-term memory[C]//Proceedings of the 53th Annual Meeting of the Association for Computational Linguistics/the 7th International Joint Conference on Natural Language Processing (Volume 1:Long Papers). Stroudsburg, PA:Association for Computational Linguistics, 2015:1343-1353. [16] WANG B X. Disconnected recurrent neural networks for text categorization[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2018:2311-2320. [17] DEVLIN J, CHANG M W, LEE K, et al. BERT:pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg, PA:Association for Computational Linguistics, 2019, 1:4171-4186. [18] LIU Y H, OTT M, GOYAL N, et al. RoBERTa:a robustly optimized BERT pretraining approach[EB/OL]. (2019-06-26)[2020-10-11]. https://arxiv.org/pdf/1907.11692.pdf. [19] YANG Z C, YANG D Y, DYER C, et al. Hierarchical attention networks for document classification[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg, PA:Association for Computational Linguistics, 2016:1480-1489. [20] AMPLAYO R K, LIM S, HWANG S W. Text length adaptation in sentiment classification[C]//Proceedings of the 11th Asian Conference on Machine Learning. New York:JMLR. org, 2019:646-661. [21] 张林, 钱冠群, 樊卫国, 等. 轻型评论的情感分析研究[J]. 软件学报, 2014, 25(12):2790-2807.(ZHANG L, QIAN G Q, FAN W G, et al. Sentiment analysis based on light reviews[J]. Journal of Software, 2014, 25(12):2790-2807.) [22] SUN Z Q, YU H K, SONG X D, et al. MobileBERT:a compact task-agnostic BERT for resource-limited devices[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2020:2158-2170. [23] 陈铁明, 缪茹一, 王小号. 融合显性和隐性特征的中文微博情感分析[J]. 中文信息学报, 2016, 30(4):184-192.(CHEN T M, MIAO R Y, WANG X H. Chinesemicro-blog sentiment analysis using both explicit and implicit text features[J]. Journal of Chinese Information Processing, 2016, 30(4):184-192.) [24] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15:1929-1958. [25] LI S, ZHAO Z, HU R F, et al. Analogical reasoning on Chinese morphological and semantic relations[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2018:138-143. [26] SHEN X, TIAN X M, SUN S Y, et al. Patch reordering:a novel way to achieve rotation and translation invariance in convolutional neural networks[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press, 2017:2534-2540. |