Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (12): 3578-3584.DOI: 10.11772/j.issn.1001-9081.2021060956
Special Issue: 第十八届中国机器学习会议(CCML 2021)
• The 18th China Conference on Machine Learning • Previous Articles Next Articles
Yongkai ZHANG1,2, Zhihao WU1,2,3, Youfang LIN1,2,3, Yiji ZHAO1,2()
Received:
2021-05-12
Revised:
2021-06-15
Accepted:
2021-06-29
Online:
2021-12-28
Published:
2021-12-10
Contact:
Yiji ZHAO
About author:
ZHANG Yongkai, born in 1997, M. S. candidate. His research interests include traffic data mining, machine learning.Supported by:
张永凯1,2, 武志昊1,2,3, 林友芳1,2,3, 赵苡积1,2()
通讯作者:
赵苡积
作者简介:
张永凯(1997—),男,河南信阳人,硕士研究生,主要研究方向:交通数据挖掘、机器学习基金资助:
CLC Number:
Yongkai ZHANG, Zhihao WU, Youfang LIN, Yiji ZHAO. Spatio-temporal hyper-relationship graph convolutional network for traffic flow forecasting[J]. Journal of Computer Applications, 2021, 41(12): 3578-3584.
张永凯, 武志昊, 林友芳, 赵苡积. 面向交通流量预测的时空超关系图卷积网络[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3578-3584.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021060956
数据 | 节点数 | 时间范围 |
---|---|---|
PEMS03 | 358 | 2018-09-01—2018-11-30 |
PEMS04 | 307 | 2018-01-01—2018-02-28 |
PEMS07 | 883 | 2017-05-01—2017-08-31 |
PEMS08 | 170 | 2016-07-01—2016-08-31 |
Tab. 1 Details of datasets
数据 | 节点数 | 时间范围 |
---|---|---|
PEMS03 | 358 | 2018-09-01—2018-11-30 |
PEMS04 | 307 | 2018-01-01—2018-02-28 |
PEMS07 | 883 | 2017-05-01—2017-08-31 |
PEMS08 | 170 | 2016-07-01—2016-08-31 |
数据 | 指标 | VAR | SVR | GRU | DCRNN | STGCN | ASTGCN | STSGCN | STHGCN |
---|---|---|---|---|---|---|---|---|---|
PEMS03-5 | MAE | 21.18 | 21.75 | 19.96±0.03 | 17.93±0.03 | 18.29±0.24 | 16.80±0.04 | ||
MAPE | 21.97 | 21.00 | 19.83±0.42 | 18.54±0.20 | 18.30±0.53 | 16.48±0.12 | 17.35±0.27 | ||
RMSE | 35.04 | 34.70 | 32.90±0.28 | 30.18±0.42 | 29.92±0.36 | 30.40±0.40 | 28.56±0.30 | ||
PEMS03-10 | MAE | 51.43 | 55.57 | 48.85±0.11 | 38.20±0.11 | 40.21±0.08 | 38.83±0.82 | 34.38±0.25 | |
MAPE | 27.93 | 28.74 | 27.97±1.22 | 19.12±0.19 | 23.40±0.61 | 21.41±1.02 | 16.81±0.37 | ||
RMSE | 84.65 | 91.80 | 81.68±0.21 | 66.89±0.78 | 67.77±0.41 | 65.13±1.29 | 60.13±0.30 | ||
PEMS03-15 | MAE | 95.67 | 105.26 | 87.87±0.30 | 66.60±0.19 | 70.74±0.35 | 63.34±2.62 | 55.05±0.46 | |
MAPE | 38.01 | 39.54 | 38.29±0.98 | 23.33±0.12 | 27.67±0.73 | 23.59±1.89 | 18.70±0.52 | ||
RMSE | 154.01 | 172.03 | 145.61±0.29 | 118.40±0.88 | 119.05±0.63 | 107.49±0.69 | 96.29±1.08 | ||
PEMS04-5 | MAE | 24.00 | 28.11 | 25.68±0.01 | 23.58±0.05 | 23.10±0.03 | 22.60±0.39 | 20.50±0.05 | |
MAPE | 18.06 | 19.29 | 17.83±0.18 | 15.64±0.02 | 15.89±0.14 | 16.72±0.29 | 13.58±0.13 | ||
RMSE | 37.01 | 43.54 | 39.81±0.03 | 37.04±0.15 | 35.47±0.06 | 34.22±0.50 | 32.35±0.07 | ||
PEMS04-10 | MAE | 50.33 | 69.01 | 61.66±0.11 | 52.23±0.15 | 51.24±0.49 | 45.06±0.67 | 39.23±0.30 | |
MAPE | 22.10 | 27.28 | 25.70±0.65 | 18.91±0.07 | 20.50±0.52 | 18.90±0.62 | 13.36±0.14 | ||
RMSE | 76.54 | 108.63 | 95.43±0.14 | 83.55±0.33 | 77.78±0.54 | 69.05±0.69 | 62.20±0.50 | ||
PEMS04-15 | MAE | 85.17 | 126.54 | 112.97±0.28 | 90.63±0.75 | 95.54±2.57 | 72.26±1.46 | 59.38±0.80 | |
MAPE | 28.65 | 40.35 | 41.45±1.02 | 26.96±0.19 | 32.57±1.37 | 23.27±1.48 | 14.72±0.13 | ||
RMSE | 127.54 | 199.02 | 173.21±0.27 | 148.14±1.45 | 145.63±3.62 | 114.93±0.85 | 94.92±1.43 | ||
PEMS07-5 | MAE | 35.91 | 31.68 | 27.45±0.03 | 26.53±0.07 | 26.73±0.74 | 24.19±0.06 | 23.94±0.08 | |
MAPE | 16.41 | 13.84 | 12.30±0.10 | 10.68±0.50 | 12.14±0.08 | 13.07±0.60 | 10.12±0.08 | ||
RMSE | 55.48 | 48.95 | 42.74±0.05 | 40.77±0.06 | 40.29±1.30 | 39.35±0.24 | 37.53±0.14 | ||
PEMS07-10 | MAE | 105.04 | 82.05 | 68.06±0.16 | 65.06±0.32 | 58.39±1.52 | 53.94±0.65 | 52.08±0.47 | |
MAPE | 24.90 | 18.68 | 16.60±0.27 | 11.92±0.02 | 15.82±0.31 | 14.95±2.78 | 11.08±0.04 | ||
RMSE | 153.68 | 127.63 | 106.91±0.26 | 99.58±0.26 | 90.36±1.95 | 87.52±0.57 | 83.91±0.76 | ||
PEMS07-15 | MAE | 245.48 | 157.24 | 122.98±0.20 | 99.86±1.55 | 119.18±0.85 | 97.66±1.62 | 86.03±1.01 | |
MAPE | 37.42 | 25.27 | 23.09±0.69 | 15.71±0.29 | 20.36±0.59 | 15.20±0.58 | 12.32±0.16 | ||
RMSE | 350.04 | 239.94 | 195.08±0.23 | 156.98±2.31 | 183.63±0.98 | 161.53±2.45 | 143.00±1.68 | ||
PEMS08-5 | MAE | 23.31 | 22.74 | 20.03±0.03 | 18.20±0.06 | 17.92±0.03 | 19.76±0.50 | 16.53±0.04 | |
MAPE | 15.02 | 14.16 | 13.11±0.22 | 11.64±0.01 | 12.16±0.07 | 13.35±0.83 | 10.41±0.09 | ||
RMSE | 34.79 | 35.39 | 31.55±0.04 | 28.21±0.10 | 27.67±0.08 | 29.16±0.48 | 25.57±0.06 | ||
PEMS08-10 | MAE | 52.73 | 56.38 | 47.78±0.15 | 41.15±0.20 | 39.74±0.16 | 42.61±0.57 | 32.97±0.50 | |
MAPE | 17.21 | 17.86 | 17.94±0.63 | 13.18±0.05 | 14.95±0.06 | 15.21±0.88 | 10.27±0.22 | ||
RMSE | 77.65 | 89.64 | 76.24±0.07 | 65.42±0.27 | 61.64±0.17 | 63.12±0.59 | 52.40±0.61 | ||
PEMS08-15 | MAE | 92.20 | 105.04 | 85.43±0.08 | 71.61±0.31 | 74.06±1.42 | 70.21±3.31 | 50.80±0.57 | |
MAPE | 21.08 | 23.88 | 26.31±1.36 | 16.51±0.12 | 20.40±0.50 | 18.96±0.96 | 10.73±0.16 | ||
RMSE | 134.35 | 164.96 | 136.05±0.23 | 116.18±0.54 | 112.93±1.59 | 103.84±4.74 | 81.06±0.75 |
Tab. 2 Performance comparison of 8 traffic flow forecasting models on different datasets
数据 | 指标 | VAR | SVR | GRU | DCRNN | STGCN | ASTGCN | STSGCN | STHGCN |
---|---|---|---|---|---|---|---|---|---|
PEMS03-5 | MAE | 21.18 | 21.75 | 19.96±0.03 | 17.93±0.03 | 18.29±0.24 | 16.80±0.04 | ||
MAPE | 21.97 | 21.00 | 19.83±0.42 | 18.54±0.20 | 18.30±0.53 | 16.48±0.12 | 17.35±0.27 | ||
RMSE | 35.04 | 34.70 | 32.90±0.28 | 30.18±0.42 | 29.92±0.36 | 30.40±0.40 | 28.56±0.30 | ||
PEMS03-10 | MAE | 51.43 | 55.57 | 48.85±0.11 | 38.20±0.11 | 40.21±0.08 | 38.83±0.82 | 34.38±0.25 | |
MAPE | 27.93 | 28.74 | 27.97±1.22 | 19.12±0.19 | 23.40±0.61 | 21.41±1.02 | 16.81±0.37 | ||
RMSE | 84.65 | 91.80 | 81.68±0.21 | 66.89±0.78 | 67.77±0.41 | 65.13±1.29 | 60.13±0.30 | ||
PEMS03-15 | MAE | 95.67 | 105.26 | 87.87±0.30 | 66.60±0.19 | 70.74±0.35 | 63.34±2.62 | 55.05±0.46 | |
MAPE | 38.01 | 39.54 | 38.29±0.98 | 23.33±0.12 | 27.67±0.73 | 23.59±1.89 | 18.70±0.52 | ||
RMSE | 154.01 | 172.03 | 145.61±0.29 | 118.40±0.88 | 119.05±0.63 | 107.49±0.69 | 96.29±1.08 | ||
PEMS04-5 | MAE | 24.00 | 28.11 | 25.68±0.01 | 23.58±0.05 | 23.10±0.03 | 22.60±0.39 | 20.50±0.05 | |
MAPE | 18.06 | 19.29 | 17.83±0.18 | 15.64±0.02 | 15.89±0.14 | 16.72±0.29 | 13.58±0.13 | ||
RMSE | 37.01 | 43.54 | 39.81±0.03 | 37.04±0.15 | 35.47±0.06 | 34.22±0.50 | 32.35±0.07 | ||
PEMS04-10 | MAE | 50.33 | 69.01 | 61.66±0.11 | 52.23±0.15 | 51.24±0.49 | 45.06±0.67 | 39.23±0.30 | |
MAPE | 22.10 | 27.28 | 25.70±0.65 | 18.91±0.07 | 20.50±0.52 | 18.90±0.62 | 13.36±0.14 | ||
RMSE | 76.54 | 108.63 | 95.43±0.14 | 83.55±0.33 | 77.78±0.54 | 69.05±0.69 | 62.20±0.50 | ||
PEMS04-15 | MAE | 85.17 | 126.54 | 112.97±0.28 | 90.63±0.75 | 95.54±2.57 | 72.26±1.46 | 59.38±0.80 | |
MAPE | 28.65 | 40.35 | 41.45±1.02 | 26.96±0.19 | 32.57±1.37 | 23.27±1.48 | 14.72±0.13 | ||
RMSE | 127.54 | 199.02 | 173.21±0.27 | 148.14±1.45 | 145.63±3.62 | 114.93±0.85 | 94.92±1.43 | ||
PEMS07-5 | MAE | 35.91 | 31.68 | 27.45±0.03 | 26.53±0.07 | 26.73±0.74 | 24.19±0.06 | 23.94±0.08 | |
MAPE | 16.41 | 13.84 | 12.30±0.10 | 10.68±0.50 | 12.14±0.08 | 13.07±0.60 | 10.12±0.08 | ||
RMSE | 55.48 | 48.95 | 42.74±0.05 | 40.77±0.06 | 40.29±1.30 | 39.35±0.24 | 37.53±0.14 | ||
PEMS07-10 | MAE | 105.04 | 82.05 | 68.06±0.16 | 65.06±0.32 | 58.39±1.52 | 53.94±0.65 | 52.08±0.47 | |
MAPE | 24.90 | 18.68 | 16.60±0.27 | 11.92±0.02 | 15.82±0.31 | 14.95±2.78 | 11.08±0.04 | ||
RMSE | 153.68 | 127.63 | 106.91±0.26 | 99.58±0.26 | 90.36±1.95 | 87.52±0.57 | 83.91±0.76 | ||
PEMS07-15 | MAE | 245.48 | 157.24 | 122.98±0.20 | 99.86±1.55 | 119.18±0.85 | 97.66±1.62 | 86.03±1.01 | |
MAPE | 37.42 | 25.27 | 23.09±0.69 | 15.71±0.29 | 20.36±0.59 | 15.20±0.58 | 12.32±0.16 | ||
RMSE | 350.04 | 239.94 | 195.08±0.23 | 156.98±2.31 | 183.63±0.98 | 161.53±2.45 | 143.00±1.68 | ||
PEMS08-5 | MAE | 23.31 | 22.74 | 20.03±0.03 | 18.20±0.06 | 17.92±0.03 | 19.76±0.50 | 16.53±0.04 | |
MAPE | 15.02 | 14.16 | 13.11±0.22 | 11.64±0.01 | 12.16±0.07 | 13.35±0.83 | 10.41±0.09 | ||
RMSE | 34.79 | 35.39 | 31.55±0.04 | 28.21±0.10 | 27.67±0.08 | 29.16±0.48 | 25.57±0.06 | ||
PEMS08-10 | MAE | 52.73 | 56.38 | 47.78±0.15 | 41.15±0.20 | 39.74±0.16 | 42.61±0.57 | 32.97±0.50 | |
MAPE | 17.21 | 17.86 | 17.94±0.63 | 13.18±0.05 | 14.95±0.06 | 15.21±0.88 | 10.27±0.22 | ||
RMSE | 77.65 | 89.64 | 76.24±0.07 | 65.42±0.27 | 61.64±0.17 | 63.12±0.59 | 52.40±0.61 | ||
PEMS08-15 | MAE | 92.20 | 105.04 | 85.43±0.08 | 71.61±0.31 | 74.06±1.42 | 70.21±3.31 | 50.80±0.57 | |
MAPE | 21.08 | 23.88 | 26.31±1.36 | 16.51±0.12 | 20.40±0.50 | 18.96±0.96 | 10.73±0.16 | ||
RMSE | 134.35 | 164.96 | 136.05±0.23 | 116.18±0.54 | 112.93±1.59 | 103.84±4.74 | 81.06±0.75 |
模型 | PEMS03-5 | PEMS04-5 | PEMS08-5 | |||
---|---|---|---|---|---|---|
训练 | 推理 | 训练 | 推理 | 训练 | 推理 | |
DCRNN | 144.8 | 22.2 | 77.7 | 12.8 | 45.5 | 8.3 |
STGCN | 47.9 | 7.1 | 32.3 | 4.5 | 36.6 | 4.7 |
ASTGCN | 38.9 | 7.2 | 22.5 | 4.1 | 23.2 | 4.2 |
STSGCN | 91.2 | 11.0 | 52.5 | 6.4 | 27.8 | 3.1 |
STHGCN | 18.9 | 2.8 | 7.9 | 1.5 | 9.9 | 1.3 |
Tab. 3 Comparison of training time and inference time on some datasets
模型 | PEMS03-5 | PEMS04-5 | PEMS08-5 | |||
---|---|---|---|---|---|---|
训练 | 推理 | 训练 | 推理 | 训练 | 推理 | |
DCRNN | 144.8 | 22.2 | 77.7 | 12.8 | 45.5 | 8.3 |
STGCN | 47.9 | 7.1 | 32.3 | 4.5 | 36.6 | 4.7 |
ASTGCN | 38.9 | 7.2 | 22.5 | 4.1 | 23.2 | 4.2 |
STSGCN | 91.2 | 11.0 | 52.5 | 6.4 | 27.8 | 3.1 |
STHGCN | 18.9 | 2.8 | 7.9 | 1.5 | 9.9 | 1.3 |
1 | ZHANG J P, WANG F Y, WANG K F, et al. Data-driven intelligent transportation systems: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1624-1639. 10.1109/tits.2011.2158001 |
2 | 吕明琪,洪照雄,陈铁明. 一种融合时空关联与社会事件的交通流预测方法[J]. 计算机科学, 2021, 48(2): 264-270. 10.11896/jsjkx.200300098 |
LYU M Q, HONG Z X, CENG T M. Traffic flow forecasting method combining spatio-temporal correlations and social events[J]. Computer Science, 2021, 48(2): 264-270. 10.11896/jsjkx.200300098 | |
3 | YU B, YIN H T, ZHU Z X. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. [S.l.]: IJCAI Organization, 2018: 3634-3640. 10.24963/ijcai.2018/505 |
4 | LI Y G, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[EB/OL]. (2018-02-22) [2021-03-10].. 10.1109/ictai50040.2020.00063 |
5 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (201702-22) [2021-03-10].. |
6 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. 10.1162/neco.1997.9.8.1735 |
7 | CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. (2014-12-11) [2021-03-10].. 10.1007/978-3-662-44848-9_34 |
8 | LeCUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. 10.1109/5.726791 |
9 | SONG C, LIN Y F, GUO S N, et al. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 914-921. 10.1609/aaai.v34i01.5438 |
10 | FENG Y F, YOU H X, ZHANG Z Z, et al. Hypergraph neural networks[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: CA: AAAI Press, 2019: 3558-3565. 10.1609/aaai.v33i01.33013558 |
11 | KAMARIANAKIS Y, PRASTACOS P. Forecasting traffic flow conditions in an urban network: comparison of multivariate and univariate approaches[J]. Transportation Research Record, 2003, 1857(1): 74-84. 10.3141/1857-09 |
12 | VOORT M VAN DER, DOUGHERTY M, WATSON S. Combining Kohonen maps with ARIMA time series models to forecast traffic flow[J]. Transportation Research Part C: Emerging Technologies, 1996, 4(5): 307-318. 10.1016/s0968-090x(97)82903-8 |
13 | 翁钢民,李凌雁. 旅游客流量预测:基于季节调整的PSO-SVR模型研究[J]. 计算机应用研究, 2014, 31(3): 692-695. |
WENG G M, LI L Y. Study on tourism flow forecast: based on seasonal adjustment’ PSO-SVR model[J]. Application Research of Computers, 2014, 31(3): 692-695. | |
14 | 林培群,周楠楠. 基于多特征GBDT模型的收费站短时交通流量预测[J]. 广西大学学报(自然科学版), 2018, 43(3): 340-347. |
LIN P Q, ZHOU N N. Short-term traffic flow prediction at toll stations based on multi-feature GBDT model[J]. Journal of Guangxi University (Natural Science Edition), 2018, 43(3): 340-347. | |
15 | ZHANG J B, ZHENG Y, QI D K. Deep spatio-temporal residual networks for citywide crowd flows prediction[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2017: 1655-1661. 10.1016/j.artint.2018.03.002 |
16 | GUO S N, LIN Y F, LI S J, et al. Deep spatial-temporal 3D convolutional neural networks for traffic data forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3913-3926. 10.1109/tits.2019.2906365 |
17 | SHI X J, CHEN Z R, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015: 802-810. |
18 | 冯宁,郭晟楠,宋超,等. 面向交通流量预测的多组件时空图卷积网络[J]. 软件学报, 2019, 30(3): 759-769. 10.13328/j.cnki.jos.005697 |
FENG N, GUO S N, SONG C, et al. Multi-component spatial-temporal graph convolution networks for traffic flow forecasting[J]. Journal of Software, 2019, 30(3): 759-769. 10.13328/j.cnki.jos.005697 | |
19 | GUO S N, LIN Y F, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 922-929. 10.1609/aaai.v33i01.3301922 |
20 | WU Z H, PAN S R, LONG G D, et al. Graph WaveNet for deep spatial-temporal graph modeling[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. [S.l.]: IJCAI Organization, 2019: 1907-1913. 10.24963/ijcai.2019/264 |
21 | WU Z H, PAN S R, LONG G D, et al. Connecting the dots: multivariate time series forecasting with graph neural networks[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 753-763. 10.1145/3394486.3403118 |
22 | ZHANG Q, CHANG J L, MENG G F, et al. Spatio-temporal graph structure learning for traffic forecasting[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 1177-1185. 10.1609/aaai.v34i01.5470 |
23 | LI M Z, ZHU Z X. Spatial-temporal fusion graph neural networks for traffic flow forecasting[EB/OL]. (2021-03-06) [2021-03-10].. 10.1109/ijcnn52387.2021.9534420 |
24 | DONG Y, SAWIN W, BENGIO Y. HNHN: hypergraph networks with hyperedge neurons[EB/OL]. (2020-06-22) [2021-03-10].. |
[1] | Li ZENG, Jingru YANG, Gang HUANG, Xiang JING, Chaoran LUO. Survey on hypergraph application methods: issues, advances, and challenges [J]. Journal of Computer Applications, 2024, 44(11): 3315-3326. |
[2] | Nengqiang XIANG, Xiaofei ZHU, Zhaoze GAO. Information diffusion prediction model of prototype-aware dual-channel graph convolutional neural network [J]. Journal of Computer Applications, 2024, 44(10): 3260-3266. |
[3] | Lantian XU, Ronghua LI, Yongheng DAI, Guoren WANG. Maximal clique searching algorithm for hypergraphs [J]. Journal of Computer Applications, 2023, 43(8): 2319-2324. |
[4] | Weichao DANG, Bingyang CHENG, Gaimei GAO, Chunxia LIU. Contrastive hypergraph transformer for session-based recommendation [J]. Journal of Computer Applications, 2023, 43(12): 3683-3688. |
[5] | Xiaojie LI, Chaoran CUI, Guangle SONG, Yaxi SU, Tianze WU, Chunyun ZHANG. Stock trend prediction method based on temporal hypergraph convolutional neural network [J]. Journal of Computer Applications, 2022, 42(3): 797-803. |
[6] | TIAN Ling, ZHANG Jinchuan, ZHANG Jinhao, ZHOU Wangtao, ZHOU Xue. Knowledge graph survey: representation, construction, reasoning and knowledge hypergraph theory [J]. Journal of Computer Applications, 2021, 41(8): 2161-2186. |
[7] | ZHOU Yang, WU Qiwu, JIANG Lingzhi. Group key management scheme based on distributed path computing element in multi-domain optical network [J]. Journal of Computer Applications, 2019, 39(4): 1095-1099. |
[8] | YU Jianglan, LI Xiangli, ZHAO Pengfei. Sparse non-negative matrix factorization based on kernel and hypergraph regularization [J]. Journal of Computer Applications, 2019, 39(3): 742-749. |
[9] | LIU Shengjiu, LI Tianrui, YANG Zonglin, ZHU Jie. Measure method and properties of weighted hypernetwork [J]. Journal of Computer Applications, 2019, 39(11): 3107-3113. |
[10] | XU Qian, CHEN Hongchang, WU Zheng, HUANG Ruiyang. User identification method across social networks based on weighted hypergraph [J]. Journal of Computer Applications, 2017, 37(12): 3435-3441. |
[11] | . Method for estimating network structure of short-term traffic flow forecasting model [J]. Journal of Computer Applications, 2009, 29(12): 3249-3252. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||