Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (3): 797-803.DOI: 10.11772/j.issn.1001-9081.2021050748
Special Issue: 人工智能; 2021年中国计算机学会人工智能会议(CCFAI 2021)
• 2021 CCF Conference on Artificial Intelligence (CCFAI 2021) • Previous Articles Next Articles
Xiaojie LI1, Chaoran CUI1(
), Guangle SONG2, Yaxi SU1, Tianze WU3, Chunyun ZHANG1
Received:2021-05-11
Revised:2021-07-16
Accepted:2021-07-21
Online:2021-11-09
Published:2022-03-10
Contact:
Chaoran CUI
About author:LI Xiaojie, born in 1998, M. S. candidate. Her research interests include deep learning, data mining.Supported by:
李晓杰1, 崔超然1(
), 宋广乐2, 苏雅茜1, 吴天泽3, 张春云1
通讯作者:
崔超然
作者简介:李晓杰(1998—),女,山东聊城人,硕士研究生,主要研究方向:深度学习、数据挖掘基金资助:CLC Number:
Xiaojie LI, Chaoran CUI, Guangle SONG, Yaxi SU, Tianze WU, Chunyun ZHANG. Stock trend prediction method based on temporal hypergraph convolutional neural network[J]. Journal of Computer Applications, 2022, 42(3): 797-803.
李晓杰, 崔超然, 宋广乐, 苏雅茜, 吴天泽, 张春云. 基于时序超图卷积神经网络的股票趋势预测方法[J]. 《计算机应用》唯一官方网站, 2022, 42(3): 797-803.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021050748
| 数据集 | 交易天数 | 上涨比率 | 下跌比率 | 持平比率 |
|---|---|---|---|---|
| 训练集 | 1 021 | 0.385 | 0.375 | 0.240 |
| 验证集 | 340 | 0.379 | 0.372 | 0.249 |
| 测试集 | 331 | 0.363 | 0.360 | 0.277 |
Tab. 1 Statistics of sequential data
| 数据集 | 交易天数 | 上涨比率 | 下跌比率 | 持平比率 |
|---|---|---|---|---|
| 训练集 | 1 021 | 0.385 | 0.375 | 0.240 |
| 验证集 | 340 | 0.379 | 0.372 | 0.249 |
| 测试集 | 331 | 0.363 | 0.360 | 0.277 |
| 股票代码 | 股票名称 | 所属行业 | 股票代码 | 股票名称 | 所属行业 |
|---|---|---|---|---|---|
| 000001.SZ | 平安银行 | 银行 | 000089.SZ | 深圳机场 | 机场 |
| 000011.SZ | 深物业A | 区域地产 | 000338.SZ | 潍柴动力 | 汽车配件 |
| 000012.SZ | 南玻A | 玻璃 | 000417.SZ | 合肥百货 | 百货 |
| 000014.SZ | 沙河股份 | 全国地产 | 000419.SZ | 通程控股 | 百货 |
| 000021.SZ | 深科技 | IT设备 | 000423.SZ | 东阿阿胶 | 中成药 |
| 000030.SZ | 富奥股份 | 汽车配件 | 000501.SZ | 鄂武商A | 百货 |
| 000049.SZ | 德赛电池 | 电气设备 | 000507.SZ | 珠海港 | 港口 |
| 000088.SZ | 盐田港 | 港口 |
Tab. 2 Part of stock and industry
| 股票代码 | 股票名称 | 所属行业 | 股票代码 | 股票名称 | 所属行业 |
|---|---|---|---|---|---|
| 000001.SZ | 平安银行 | 银行 | 000089.SZ | 深圳机场 | 机场 |
| 000011.SZ | 深物业A | 区域地产 | 000338.SZ | 潍柴动力 | 汽车配件 |
| 000012.SZ | 南玻A | 玻璃 | 000417.SZ | 合肥百货 | 百货 |
| 000014.SZ | 沙河股份 | 全国地产 | 000419.SZ | 通程控股 | 百货 |
| 000021.SZ | 深科技 | IT设备 | 000423.SZ | 东阿阿胶 | 中成药 |
| 000030.SZ | 富奥股份 | 汽车配件 | 000501.SZ | 鄂武商A | 百货 |
| 000049.SZ | 德赛电池 | 电气设备 | 000507.SZ | 珠海港 | 港口 |
| 000088.SZ | 盐田港 | 港口 |
| 截止日期 | 股票代码 | 所含 股票数 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 2013-03-31 | 000639.SZ | 000830.SZ | 000999.SZ | 002022.SZ | 002570.SZ | 002664.SZ | 300032.SZ | 600285.SH | 600527.SH | 600571.SH | 10 |
| 2013-06-30 | 000639.SZ | 000830.SZ | 000999.SZ | 002022.SZ | 002570.SZ | 300032.SZ | 600486.SH | 600527.SH | … | 600887.SH | 33 |
| 2013-09-30 | 000538.SZ | 000651.SZ | 000661.SZ | 002236.SZ | 002241.SZ | 002415.SZ | 300058.SZ | 300215.SZ | 300228.SZ | 601633.SH | 10 |
| 2013-12-31 | 000538.SZ | 000651.SZ | 002236.SZ | 002241.SZ | 002353.SZ | 300215.SZ | 300228.SZ | 600309.SH | … | 601628.SH | 22 |
Tab. 3 000011.OF Shareholding list in 2013
| 截止日期 | 股票代码 | 所含 股票数 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 2013-03-31 | 000639.SZ | 000830.SZ | 000999.SZ | 002022.SZ | 002570.SZ | 002664.SZ | 300032.SZ | 600285.SH | 600527.SH | 600571.SH | 10 |
| 2013-06-30 | 000639.SZ | 000830.SZ | 000999.SZ | 002022.SZ | 002570.SZ | 300032.SZ | 600486.SH | 600527.SH | … | 600887.SH | 33 |
| 2013-09-30 | 000538.SZ | 000651.SZ | 000661.SZ | 002236.SZ | 002241.SZ | 002415.SZ | 300058.SZ | 300215.SZ | 300228.SZ | 601633.SH | 10 |
| 2013-12-31 | 000538.SZ | 000651.SZ | 002236.SZ | 002241.SZ | 002353.SZ | 300215.SZ | 300228.SZ | 600309.SH | … | 601628.SH | 22 |
| 方法 | Accuracy | Precision | Recall | F1_score |
|---|---|---|---|---|
| GRU+GCN_industry | 37.232±0.111 | 35.003±2.962 | 34.255±3.150 | 34.611±2.925 |
| GRU+GCN_fund | 37.076±0.259 | 34.123±1.197 | 34.172±0.412 | 34.144±0.792 |
| GRU+GCN_hybrid | 37.570±0.223 | 38.497±1.696 | 34.445±0.567 | 36.352±1.035 |
| GRU+HGCN_industry | 38.407±0.442 | 38.361±0.060 | 34.815±0.170 | 36.502±0.114 |
| GRU+HGCN_fund | 38.292±0.448 | 37.482±1.102 | 34.805±0.915 | 36.090±0.866 |
| GRU+HGCN_hybrid | 38.852±0.361 | 39.593±1.256 | 35.652±0.365 | 37.514±0.689 |
Tab. 4 Performance comparison of graph learning and hypergraph learning methods
| 方法 | Accuracy | Precision | Recall | F1_score |
|---|---|---|---|---|
| GRU+GCN_industry | 37.232±0.111 | 35.003±2.962 | 34.255±3.150 | 34.611±2.925 |
| GRU+GCN_fund | 37.076±0.259 | 34.123±1.197 | 34.172±0.412 | 34.144±0.792 |
| GRU+GCN_hybrid | 37.570±0.223 | 38.497±1.696 | 34.445±0.567 | 36.352±1.035 |
| GRU+HGCN_industry | 38.407±0.442 | 38.361±0.060 | 34.815±0.170 | 36.502±0.114 |
| GRU+HGCN_fund | 38.292±0.448 | 37.482±1.102 | 34.805±0.915 | 36.090±0.866 |
| GRU+HGCN_hybrid | 38.852±0.361 | 39.593±1.256 | 35.652±0.365 | 37.514±0.689 |
| 模型 | Accuracy | Precision | Recall | F1_score |
|---|---|---|---|---|
| LSTM | 35.187±0.161 | 35.963±8.260 | 34.444±0.240 | 34.868±4.375 |
| GRU | 35.402±1.239 | 36.154±8.529 | 33.975±0.452 | 34.694±4.398 |
| SFM | 33.314±0.201 | 26.498±6.912 | 33.336±0.002 | 29.213±4.058 |
| RSR | 37.560±1.010 | 34.470±9.584 | 35.502±0.717 | 34.547±5.708 |
| GRU+HGCN_hybrid | 38.852±0.361 | 39.593±1.256 | 35.652±0.365 | 37.514±0.689 |
Tab. 5 Performance comparison with existing stock prediction models
| 模型 | Accuracy | Precision | Recall | F1_score |
|---|---|---|---|---|
| LSTM | 35.187±0.161 | 35.963±8.260 | 34.444±0.240 | 34.868±4.375 |
| GRU | 35.402±1.239 | 36.154±8.529 | 33.975±0.452 | 34.694±4.398 |
| SFM | 33.314±0.201 | 26.498±6.912 | 33.336±0.002 | 29.213±4.058 |
| RSR | 37.560±1.010 | 34.470±9.584 | 35.502±0.717 | 34.547±5.708 |
| GRU+HGCN_hybrid | 38.852±0.361 | 39.593±1.256 | 35.652±0.365 | 37.514±0.689 |
| 方法 | R/% | AR/% | SR | MDD/% |
|---|---|---|---|---|
| Buy-and-hold | 2.48 | 2.16 | 0.027 | 20.22 |
| LSTM | 6.84 | 5.96 | 0.271 | 13.92 |
| GRU | 6.43 | 5.58 | 0.240 | 14.48 |
| SFM | 5.78 | 5.02 | 0.523 | 5.38 |
| RSR | 3.20 | 2.78 | 0.067 | 16.72 |
| GRU+HGCN_hybrid | 13.07 | 11.30 | 0.550 | 12.40 |
Tab.6 Experimental results of profitability of each model
| 方法 | R/% | AR/% | SR | MDD/% |
|---|---|---|---|---|
| Buy-and-hold | 2.48 | 2.16 | 0.027 | 20.22 |
| LSTM | 6.84 | 5.96 | 0.271 | 13.92 |
| GRU | 6.43 | 5.58 | 0.240 | 14.48 |
| SFM | 5.78 | 5.02 | 0.523 | 5.38 |
| RSR | 3.20 | 2.78 | 0.067 | 16.72 |
| GRU+HGCN_hybrid | 13.07 | 11.30 | 0.550 | 12.40 |
| 1 | HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527-1554. 10.1162/neco.2006.18.7.1527 |
| 2 | SCHUSTER M, KULDIP K P. Bidirectional recurrent neural networks [J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681. 10.1109/78.650093 |
| 3 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory [J]. Neural Computation, 1997, 9(8): 1735-1780. 10.1162/neco.1997.9.8.1735 |
| 4 | CHO K, MERRIENBOER B V, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation [C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2014: 1724-1734. 10.3115/v1/d14-1179 |
| 5 | NIEPERT M, AHMED M, KUTZKOV K. Learning convolutional neural networks for graphs [C]// Proceedings of the 33rd International Conference on Machine Learning. New York: ACM, 2016: 2014-2023. |
| 6 | PREOZZI B, ALRFOU R, SKIENA S. DeepWalk: online learning of social representations [C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710. |
| 7 | CHEN Y, WEI Z, HUANG X. Incorporating corporation relationship via graph convolutional neural networks for stock price prediction [C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 1655-1658. 10.1145/3269206.3269269 |
| 8 | FENG F, HE X, WANG X, et al. Temporal relational ranking for stock prediction [EB/OL].[2020-06-20].. 10.1145/3309547 |
| 9 | FENG Y, YOU H, ZHANG Z, et al. Hypergraph neural networks [C]// Proceedings of the 33rd Conference on Association for the Advancement of Artificial Intelligence. Menlo Park, CA: AAAI, 2019: 3558-3565. 10.1609/aaai.v33i01.33013558 |
| 10 | 杨种学. 基于回归技术商品销售趋势预测模型的实现[J]. 保山师专学报, 2009, 28(5): 64-67. 10.3969/j.issn.1674-9340.2009.05.021 |
| YANG Z X. Implementation of transaction trend prediction model based on regression analysis [J]. Journal of Baoshan Teachers’ College, 2009, 28(5): 64-67. 10.3969/j.issn.1674-9340.2009.05.021 | |
| 11 | OKASHA M K. Using support vector machines in financial time series forecasting [J]. International Journal of Statistics and Applications, 2014, 4(1): 28-39. |
| 12 | 邓晶, 李路. 参数优化随机森林在股票预测中的应用[J]. 软件, 2020, 41(1): 178-182. 10.3969/j.issn.1003-6970.2020.01.039 |
| DENG J, LI L. Application of parameter optimization random forest in stock forecasting [J]. Software, 2020, 41(1): 178-182. 10.3969/j.issn.1003-6970.2020.01.039 | |
| 13 | 刘建伟, 王园方, 罗雄麟. 深度记忆网络研究进展[J]. 计算机学报, 2020, 43(3): 2-52. |
| LIU J W, WANG Y F, LUO X L. Research progress of deep memory networks [J]. Chinese Journal of Computer Science, 2020, 43(3): 2-52. | |
| 14 | AKITA R, YOSHIHARA A, MATSUBARA T, et al. Deep learning for stock prediction using numerical and textual information [C]// Proceedings of the 15th International Conference on Computer and Information Science. Piscataway: IEEE, 2016: 1-6. 10.1109/icis.2016.7550882 |
| 15 | ZHANG L, AGGARWAL C, QI G. Stock price prediction via discovering multi-frequency trading patterns [C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2017: 2141-2149. 10.1145/3097983.3098117 |
| 16 | 黎镭, 陈蔼祥, 李伟书,等. GRU递归神经网络对股票收盘价的预测研究[J]. 计算机与现代化, 2018(11): 103-108. 10.3969/j.issn.1006-2475.2018.11.018 |
| LI L, CHEN A X, LI W S, et al. Research on the prediction of stock closing price by GRU recursive neural network [J]. Computer and Modernization, 2018(11): 103-108. 10.3969/j.issn.1006-2475.2018.11.018 | |
| 17 | WANG M, XUE L, WU X. Visual classification by l1-hypergraph modeling [J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(9):2564-2574. |
| 18 | HUANG Y, LIU Q, METAXAS D. Video object segmentation by hypergraph cut [C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2009: 1738-1745. 10.1109/cvpr.2009.5206795 |
| 19 | CHEN F, GAO Y, CAO D, et al. Multimodal hypergraph learning for microblog sentiment prediction [C]// Proceedings of the 2015 IEEE International Conference on Multimedia and Expo. Piscataway, NJ: IEEE, 2015: 1-6. 10.1109/icme.2015.7177477 |
| 20 | JI R, CHEN F, CAO L, et al. Cross-modality microblog sentiment prediction via bi-layer multimodal hypergraph learning [J]. IEEE Transactions on Multimedia, 2019, 21(4): 1062-1075. 10.1109/tmm.2018.2867718 |
| 21 | BAI S, ZHANG F, TORR P H. Hypergraph convolution and hypergraph attention [J]. Pattern Recognition, 2021, 110: 107637. 10.1016/j.patcog.2020.107637 |
| 22 | FENG F, CHEN H, HE X, et al. Enhancing stock movement prediction with adversarial training [C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. Menlo Park, CA: AAAI, 2019: 5843-5849. 10.24963/ijcai.2019/810 |
| [1] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. |
| [2] | Min SUN, Qian CHENG, Xining DING. CBAM-CGRU-SVM based malware detection method for Android [J]. Journal of Computer Applications, 2024, 44(5): 1539-1545. |
| [3] | Li XU, Xiangyuan FU, Haoran LI. Spatial-temporal traffic flow prediction model based on gated convolution [J]. Journal of Computer Applications, 2023, 43(9): 2760-2765. |
| [4] | Kunpei YE, Xi XIONG, Zhe DING. Recruitment recommendation model based on field fusion and time weight [J]. Journal of Computer Applications, 2023, 43(7): 2133-2139. |
| [5] | Nannan SUN, Chunhui PIAO, Xinna MA. Group buying recommendation method based on social relationship and time-series information [J]. Journal of Computer Applications, 2023, 43(6): 1719-1729. |
| [6] | Lu CHEN, Daoxi CHEN, Yiming LU, Weizhong LU. Handwritten mathematical expression recognition model based on attention mechanism and encoder-decoder [J]. Journal of Computer Applications, 2023, 43(4): 1297-1302. |
| [7] | Dan XU, Hongfang GONG, Rongrong LUO. Aspect sentiment analysis with aspect item and context representation [J]. Journal of Computer Applications, 2023, 43(10): 3086-3092. |
| [8] | ZHANG Jun, WU Pengli, SHI Lukui, SHI Jin, PAN Bin. Deep learning model for multi-station temperature prediction combined with MOD11A1 and surface meteorological station data [J]. Journal of Computer Applications, 2023, 43(1): 321-328. |
| [9] | Donglin MA, Sizhou MA, Weijie WANG. Multi-site temperature prediction model based on graph convolutional network and gated recurrent unit [J]. Journal of Computer Applications, 2022, 42(1): 287-293. |
| [10] | LIU Zichen, LI Xiaojuan, WEI Wei. Automatic patent price evaluation based on recurrent neural network [J]. Journal of Computer Applications, 2021, 41(9): 2532-2538. |
| [11] | Huibo LI, Yunxiao ZHAO, Liang BAI. Dynamic graph representation learning method based on deep neural network and gated recurrent unit [J]. Journal of Computer Applications, 2021, 41(12): 3432-3437. |
| [12] | GAO Shile, WANG Ying, LI Hailin, WAN Xiaoji. Prediction method on financial time series data based on matrix profile [J]. Journal of Computer Applications, 2021, 41(1): 199-207. |
| [13] | MENG Xinyu, WANG Ruihan, ZHANG Xiping, WANG Mingjie, QIU Gang, WANG Zhengxia. Ultra-short-term wind power prediction based on empirical mode decomposition and multi-branch neural network [J]. Journal of Computer Applications, 2021, 41(1): 237-242. |
| [14] | YANG Yunlong, SUN Jianqiang, SONG Guochao. Text sentiment analysis based on gated recurrent unit and capsule features [J]. Journal of Computer Applications, 2020, 40(9): 2531-2535. |
| [15] | CHEN Xiukai, LU Zhihua, ZHOU Yu. Speech separation algorithm based on convolutional encoder decoder and gated recurrent unit [J]. Journal of Computer Applications, 2020, 40(7): 2137-2141. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||