[1] 陈斌, 陈松灿, 潘志松, 等. 异常检测综述[J]. 山东大学学报(工学版), 2009, 39(6):13-23.(CHEN B,CHEN S C,PAN Z S,et al. Survey of outlier detection technologies[J]. Journal of Shandong University (Engineering Science), 2009, 39(6):13-23.) [2] CHANDOLA V,BANERJEE A,KUMAR V. Anomaly detection:a survey[J]. ACM Computing Surveys, 2009, 41(3):Article No. 15. [3] WANG H,BAH M J,HAMMAD M. Progress in outlier detection techniques:a survey[J]. IEEE Access, 2019, 7:107964-108000. [4] KRIEGEL H P,SCHUBERT M,ZIMEK A. Angle-based outlier detection in high-dimensional data[C]//Proceedings of the 2008 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2008:444-452. [5] LI Z,ZHAO Y,BOTTA N,et al. COPOD:copula-based outlier detection[C]//Proceedings of the2020 IEEE International Conference on Data Mining. Piscataway:IEEE,2020:1118-1123. [6] RAMASWAMY S,RASTOGI R,SHIM K. Efficient algorithms for mining outliers from large data sets[J]. ACM SIGMOD Record, 2000,29(2):427-438. [7] BREUNIG M M,KRIEGEL H P,NG R T,et al. LOF:identifying density-based local outliers[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York:ACM,2000:93-104. [8] CHEN J,SATHE S,AGGARWAL C,et al. Outlier detection with autoencoder ensembles[C]//Proceedings of the 2017 SIAM International Conference on Data Mining. Philadelphia:SIAM, 2017:90-98. [9] LAZAREVIC A,KUMAR V. Feature bagging for outlier detection[C]//Proceedings of the 2005 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2005:157-166. [10] RAYANA S, AKOGLU L. Less is more:building selective anomaly ensembles[J]. ACM Transactions on Knowledge Discovery from Data,2016,10(4):Article No. 42. [11] LIU F T,TING K M,ZHOU Z. Isolation forest[C]//Proceedings of the 2008 8th IEEE International Conference on Data Mining. Piscataway:IEEE,2008:413-422. [12] LIU F T,TING K M,ZHOU Z. Isolation-based anomaly detection[J]. ACM Transactions on Knowledge Discovery from Data, 2012,6(1):Article No. 3. [13] 杨先圣, 姜磊, 彭雄, 等. 基于大数据的异常检测方法研究[J]. 计算机工程与科学, 2018, 40(7):1180-1186.(YANG X S, JIANG L,PENG X,et al. A new outlier detection method based on large data[J]. Computer Engineering and Science,2018,40(7):1180-1186.) [14] BANDARAGODA T R, TING K M, ALBRECHT D, et al. Isolation-based anomaly detection using nearest-neighbor ensembles[J]. Computational Intelligence, 2018, 34(4):968-998. [15] 杨晓晖, 张圣昌. 基于多粒度级联孤立森林算法的异常检测模型[J]. 通信学报, 2019, 40(8):133-142.(YANG X H,ZHANG S C. Anomaly detection model based on multi-grained cascade isolation forest algorithm[J]. Journal on Communications,2019, 40(8):133-142.) [16] 王茹雪, 张丽翠, 刘姝岐. 基于瀑布型混合技术的异常检测算法[J]. 吉林大学学报(信息科学版), 2017, 35(5):544-550. (WANG R X, ZHANG L C, LIU S Q. Anomaly detection algorithm based on waterfall hybrid technology[J]. Journal of Jilin University (Information Science Edition), 2017, 35(5):544-550.) [17] HARIRI S,KIND M C,BRUNNER R J. Extended isolation forest[EB/OL].[2020-09-01]. https://arxiv.org/pdf/1811.02141.pdf. [18] 于玲, 吴铁军. 集成学习:Boosting算法综述[J]. 模式识别与人工智能,2004,17(1):52-59. (YU L,WU T J. Assemble learning:a survey of Boosting algorithms[J]. Pattern Recognition and Artificial Intelligence,2004,17(1):52-59.) [19] 李建中, 刘显敏. 大数据的一个重要方面:数据可用性[J]. 计算机研究与发展, 2013, 50(6):1147-1162.(LI J Z,LIU X M. An important aspect of big data:data usability[J]. Journal of Computer Research and Development, 2013, 50(6):1147-1162.) [20] HARMAN R, LACKO V. On decompositional algorithms for uniform sampling from n-spheres and n-balls[J]. Journal of Multivariate Analysis,2011,101(10):2297-2304. [21] 李倩, 韩斌, 汪旭祥. 基于模糊孤立森林算法的多维数据异常检测方法[J]. 计算机与数字工程, 2020, 48(4):862-866.(LI Q, HAN B,WANG X X. Multidimensional data anomaly detection method based on fuzzy isolated forest algorithm[J]. Computer and Digital Engineering,2020,48(4):862-866.) [22] RAYANA S. ODDS library[DS/OL].[2020-09-01]. http://odds.cs.stonybrook.edu. [23] PEVNÝ T. Loda:lightweight on-line detector of anomalies[J]. Machine Learning,2016,102(2):275-304. [24] ZHAO Y,NASRULLAH Z,LI Z. PyOD:a Python toolbox for scalable outlier detection[J]. Journal of Machine Learning Research,2019,20:1-7. |