[1] 王桂兰, 赵洪山, 米增强. XGBoost算法在风机主轴承故障预测中的应用[J]. 电力自动化设备, 2019, 39(1):73-77, 83.(WANG G L,ZHAO H S,MI Z Q. Application of XGBoost algorithm in prediction of wind motor main bearing fault[J]. Electric Automation Equipment,2019,39(1):73-77,83.) [2] SOH W W,YUSUF R M. Predicting credit card fraud on a imbalanced data[J]. International Journal of Data Science and Advanced Analytics,2019,1(1):12-17. [3] 林泳昌, 朱晓姝. 一种基于SMOTE的不均衡样本KNN分类方法[J]. 广西科学, 2020, 27(3):276-283.(LIN Y C,ZHU X S. A SMOTE based KNN classification method for unbalanced samples[J]. Guangxi Sciences,2020,27(3):276-283.) [4] CHAWLA N V,BOWYER K W,HALL L O,et al. SMOTE:synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research,2002,16:321-357. [5] HAN H,WANG W,MAO B. Borderline-SMOTE:a new oversampling method in imbalanced data sets learning[C]//Proceedings of the 2005 International Conference on Intelligent Computing,LNCS 3644. Berlin:Springer,2005:878-887. [6] BUNKHUMPORNPAT C, SINAPIROMSARAN K, LURSINSAP C. Safe-level-SMOTE:safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem[C]//Proceedings of the 2009 Pacific-Asia Conference on Knowledge Discovery and Data Mining,LNCS 5476. Berlin:Springer,2009:475-482. [7] 刘余霞, 刘三民, 刘涛, 等. 一种新的过采样算法DB_SMOTE[J]. 计算机工程与应用, 2014, 50(6):92-95.(LIU Y X,LIU S M, LIU T,et al. A new oversampling algorithm DB_SMOTE[J]. Computer Engineering and Applications,2014,50(6):92-95.) [8] 陈睿, 张亮, 杨静, 等. 基于BSMOTE和逆转欠抽样的不均衡数据分类算法[J]. 计算机应用研究, 2014, 31(11):3299-3303. (CHEN R,ZHANG L,YANG J,et al. Classification algorithm for imbalanced data sets based on combination of BSMOTE and inverse under sampling[J]. Application Research of Computers,2014,31(11):3299-3303.) [9] DEVI D,BISWAS S K,PURKAYASTHA B. Redundancy-driven modified Tomek-link based undersampling:a solution to class imbalance[J]. Pattern Recognition Letters,2017,93:3-12. [10] GEORGIOS D,FERNANDO B,FELIX L. Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE[J]. Information Sciences, 2018, 465:1-20. [11] 夏英, 李刘杰, 张旭, 等. 基于层次聚类的不平衡数据加权过采样方法[J]. 计算机科学, 2019, 46(4):22-27.(XIA Y,LI L J, ZHANG X, et al. Weighted oversampling method based on hierarchical clustering for unbalanced data[J]. Computer Science,2019,46(4):22-27.) [12] 李克文,林亚林,杨耀忠. 一种改进的基于欧氏距离的SDRSMOTE算法[J]. 计算机工程与科学, 2019, 41(11):2063-2070.(LI K W,LIN Y L,YANG Y Z. An improved SDRSMOTE algorithm based on Euclidean distance[J]. Computer Engineering and Science,2019,41(11):2063-2070.) [13] 魏力, 张育平. 一种改进型的不平衡数据欠采样算法[J]. 小型微型计算机系统, 2019, 40(5):1094-1098.(WEI L,ZHANG Y P. Improved under-sampling algorithm for imbalanced data[J]. Journal of Chinese Computer Systems,2019,40(5):1094-1098.) [14] 曹渝昆, 巢俊乙, 王晓飞. 基于LSTM神经网络的风机齿轮带断裂故障预测[J]. 电气自动化, 2019, 41(4):92-95.(CAO Y K, CHAO J Y,WANG X F. Prediction of wind turbine gear belt breakage based on the LSTM neural network[J]. Electrical Automation,2019,41(4):92-95.) [15] 李铭璐. 基于深度学习的风机叶片覆冰故障检测方法研究[D]. 武汉:华中科技大学, 2019:41-45.(LI M L. Study on failure detection methods of wind turbine icing event based on deep learning[D]. Wuhan:Huazhong University of Technology, 2019:41-45.) [16] 余达. 基于深度学习的风力发电系统故障在线诊断研究[D]. 广州:华南理工大学, 2018:39-43.(YU D. Online fault diagnosis of wind power systems using deep learning algorithms[D]. Guangzhou:South China University of Technology, 2018:39-43.) [17] 葛阳鸣. 基于集成学习的短期风力发电功率预测研究[D]. 南京:南京邮电大学, 2019:26-34.(GE Y M. Research on power prediction of short-term wind power generation based on integrated learning[D]. Nanjing:Nanjing University of Posts and Telecommunications,2019:26-34.) [18] FOTOUHI S,ASADI S,KATTAN M W. A comprehensive data level analysis for cancer diagnosis on imbalanced data[J]. Journal of Biomedical Informatics,2019,90:Article No. 103089. [19] 张永清, 卢荣钊, 乔少杰, 等. 一种基于样本空间的类别不平衡数据采样方法[J/OL]. 自动化学报.[2020-07-22]. https://doi.org/10.16383/j.aas.c200034.(ZHANG Y Q, LU R Z,QIAO S J, et al. A class-imbalanced data sampling method based on sample space[J/OL]. Journal of Automation.[2020-07-22]. https://doi.org/10.16383/j.aas.c200034.) [20] 宋玲玲, 王时绘, 杨超, 等. 改进的XGBoost在不平衡数据处理中的应用研究[J]. 计算机科学, 2020, 47(6):98-103.(SONG L L,WANG S H,YANG C,et al. Application research of improved XGBoost in unbalanced data processing[J]. Computer Science, 2020,47(6):98-103.) |