[1] LIU C,CAO Y,LUO Y,et al. DeepFood:deep learning-based food image recognition for computer aided dietary assessment[C]//Proceedings of the 2016 International Conference on Smart Homes and Health Telematics, LNCS 9677. Cham:Springer, 2016:37-48. [2] TANG H,LIU H,XIAO W,et al. When dictionary learning meets deep learning:deep dictionary learning and coding network for image recognition with limited data[J]. IEEE Transactions on Neural Networks and Learning Systems,2020(Early Access):1-13. [3] PELDSZUS A,STEDE M. Joint prediction in MST-style discourse parsing for argumentation mining[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2015:938-948. [4] WU R,KAMATA S I. A jointly local structured sparse deep learning network for face recognition[C]//Proceedings of the 2016 IEEE international Conference on Image Processing. Piscataway:IEEE,2016:3026-3030. [5] KAHN G,VILLAFLOR A,DING B,et al. Self-supervised deep reinforcement learning with generalized computation graphs for robot navigation[C]//Proceedings of the 2018 IEEE International Conference on Robotics and Automation. Piscataway:IEEE,2018:5129-5136. [6] FENG D,HAASE-SCHUETZ C,ROSENBAUM L,et al. Deep multi-modal object detection and semantic segmentation for autonomous driving:datasets,methods,and challenges[J]. IEEE Transactions on Intelligent Transportation Systems,2021,22(3):1341-1360. [7] 焦李成, 杨淑媛, 韩军伟. 类脑智能与深度学习的几个问题与思考[J]. 中国科学基金,2019,33(6):646-650.(JIAO L C, YANG S Y,HAN J W. Thoughts and prospects of brain-inspired intelligence[J]. Bulletin of National Natural Science Foundation of China,2019,33(6):646-650.) [8] WENG T W,ZHANG H,CHEN P Y,et al. Evaluating the robustness of neural networks:an extreme value theory approach[EB/OL].[2019-12-19]. https://arxiv.org/pdf/1801.10578.pdf. [9] CISSE M,BOJANOWSKI P,GRAVE E,et al. Parseval networks:Improving robustness to adversarial examples[C]//Proceedings of the 34th International Conference on Machine Learning. New York:JMLR. org,2017:854-863. [10] DONG Y,ZHANG P,WANG J,et al. There is limited correlation between coverage and robustness for deep neural networks[EB/OL].[2020-01-05]. https://arxiv.org/pdf/1911.05904.pdf. [11] MA L, FELIX J X, ZHANG F, et al. DeepGauge:multigranularity testing criteria for deep learning systems[C]//Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. New York:ACM, 2018:120-131. [12] KIM J,FELDT R,YOO S. Guiding deep learning system testing using surprise adequacy[C]//Proceedings of the IEEE/ACM 41st International Conference on Software Engineering. Piscataway:IEEE,2019:1039-1049. [13] 张思思, 左信, 刘建伟. 深度学习中的对抗样本问题[J]. 计算机学报,2019,42(8):1886-1904.(ZHANG S S,ZUO X,LIU J W. The problem of the adversarial examples in deep learning[J]. Chinese Journal of Computers,2019,42(8):1886-1904.) [14] 潘文雯, 王新宇, 宋明黎, 等. 对抗样本生成技术综述[J]. 软件学报,2020,31(1):67-81.(PAN W W,WANG X Y,SONG M L,et al. Survey on generating adversarial examples[J]. Journal of Software,2020,31(1):67-81.) [15] SZEGEDY C,ZAREMBA W,SUTSKEVER I,et al. Intriguing properties of neural networks[EB/OL].[2020-01-08]. http://www.arxiv.org/pdf/1312.6199.pdf. [16] GOODFELLOW I J,SHLENS J,SZEGEDY C. Explaining and harnessing adversarial examples[EB/OL].[2020-01-11]. https://arxiv.org/pdf/1412.6572.pdf. [17] PAPERNOT N,McDANIEL P,JHA S,et al. The limitations of deep learning in adversarial settings[C]//Proceedings of the 2016 IEEE European Symposium on Security and Privacy. Piscataway:IEEE,2016:372-387. [18] CARLINI N,WAGNER D. Towards evaluating the robustness of neural networks[C]//Proceedings of the 2017 IEEE Symposium on Security and Privacy. Piscataway:IEEE,2017:39-57. [19] PEI K,CAO Y,YANG J,et al. DeepXplore:automated whitebox testing of deep learning systems[C]//Proceedings of the 26th Symposium on Operating Systems Principles. New York:ACM, 2017:1-18. [20] WANG J,DONG G,SUN J,et al. Adversarial sample detection for deep neural network through model mutation testing[C]//Proceedings of the IEEE/ACM 41st International Conference on Software Engineering. Piscataway:IEEE,2019:1245-1256. [21] WANG Z,BOVIK A C. SHEIKH H R,et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing,2004,13(4):600-612. [22] HAN H,JAIN A K,WANG F,et al. Heterogeneous face attribute estimation:a deep multi-task learning approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2018, 40(11):2597-2609. [23] 李国和, 张腾, 吴卫江, 等. 面向机器学习的训练数据集均衡化方法[J]. 计算机工程与设计,2019,40(3):812-818.(LI G H, ZHANG T,WU W J,et al. Equilibration of training data set for machine learning[J]. Computer Engineering and Design,2019, 40(3):812-818.) |