Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (10): 3093-3098.DOI: 10.11772/j.issn.1001-9081.2022091468
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                                                    Yuhang LI, Yuli YANG, Yao MA, Dan YU, Yongle CHEN( )
)
												  
						
						
						
					
				
Received:2022-10-08
															
							
																	Revised:2023-02-19
															
							
																	Accepted:2023-02-23
															
							
							
																	Online:2023-04-17
															
							
																	Published:2023-10-10
															
							
						Contact:
								Yongle CHEN   
													About author:LI Yuhang, born in 1998, M. S. candidate. His research interests include artificial intelligence.Supported by:通讯作者:
					陈永乐
							作者简介:李宇航(1998—),男,山西临汾人,硕士研究生,CCF会员,主要研究方向:人工智能基金资助:CLC Number:
Yuhang LI, Yuli YANG, Yao MA, Dan YU, Yongle CHEN. Text adversarial example generation method based on BERT model[J]. Journal of Computer Applications, 2023, 43(10): 3093-3098.
李宇航, 杨玉丽, 马垚, 于丹, 陈永乐. 基于BERT模型的文本对抗样本生成方法[J]. 《计算机应用》唯一官方网站, 2023, 43(10): 3093-3098.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022091468
| 数据集 | 标签数 | 训练集 样本数 | 测试集 样本数 | 平均 单词数 | 任务 | 
|---|---|---|---|---|---|
| Yelp Reviews | 2 | 522 000 | 38 000 | 623.3 | 情感分类 | 
| AG News | 4 | 124 000 | 7 600 | 278.6 | 新闻分类 | 
| IMDB Review | 2 | 25 000 | 2 500 | 325.6 | 情感分类 | 
Tab. 1 Details of three datasets
| 数据集 | 标签数 | 训练集 样本数 | 测试集 样本数 | 平均 单词数 | 任务 | 
|---|---|---|---|---|---|
| Yelp Reviews | 2 | 522 000 | 38 000 | 623.3 | 情感分类 | 
| AG News | 4 | 124 000 | 7 600 | 278.6 | 新闻分类 | 
| IMDB Review | 2 | 25 000 | 2 500 | 325.6 | 情感分类 | 
| 数据集 | 方法 | ACC/% | SR/% | QC | Sim | SCR/% | 时间/ms | 
|---|---|---|---|---|---|---|---|
| Yelp Reviews | Textfooler | 99.2 | 77.8 | 581.0 | 0.68 | 18.1 | 954.4 | 
| TextHoaxer | 99.2 | 78.0 | 800.3 | 0.73 | 1 364.4 | ||
| CLARE | 1 391.6 | 10.6 | 3 268.6 | ||||
| TAEGM | 99.2 | 89.9 | 0.80 | 8.9 | |||
| AG News | Textfooler | 96.6 | 63.6 | 535.1 | 0.64 | 26.4 | 992.3 | 
| TextHoaxer | 96.6 | 77.4 | 1 100.2 | 1 342.5 | |||
| CLARE | 96.6 | 2 834.7 | 0.71 | 8.5 | 4 031.5 | ||
| TAEGM | 96.6 | 82.3 | 0.78 | 7.5 | |||
| IMDB Review | Textfooler | 96.1 | 77.6 | 584.3 | 0.74 | 15.4 | 833.5 | 
| TextHoaxer | 96.1 | 80.2 | 943.4 | 1 443.2 | |||
| CLARE | 96.1 | 82.6 | 1 406.6 | 7.6 | 2 677.6 | ||
| TAEGM | 96.1 | 0.88 | 7.6 | 
Tab. 2 Performance comparison of four methods performing adversarial attacks on three datasets
| 数据集 | 方法 | ACC/% | SR/% | QC | Sim | SCR/% | 时间/ms | 
|---|---|---|---|---|---|---|---|
| Yelp Reviews | Textfooler | 99.2 | 77.8 | 581.0 | 0.68 | 18.1 | 954.4 | 
| TextHoaxer | 99.2 | 78.0 | 800.3 | 0.73 | 1 364.4 | ||
| CLARE | 1 391.6 | 10.6 | 3 268.6 | ||||
| TAEGM | 99.2 | 89.9 | 0.80 | 8.9 | |||
| AG News | Textfooler | 96.6 | 63.6 | 535.1 | 0.64 | 26.4 | 992.3 | 
| TextHoaxer | 96.6 | 77.4 | 1 100.2 | 1 342.5 | |||
| CLARE | 96.6 | 2 834.7 | 0.71 | 8.5 | 4 031.5 | ||
| TAEGM | 96.6 | 82.3 | 0.78 | 7.5 | |||
| IMDB Review | Textfooler | 96.1 | 77.6 | 584.3 | 0.74 | 15.4 | 833.5 | 
| TextHoaxer | 96.1 | 80.2 | 943.4 | 1 443.2 | |||
| CLARE | 96.1 | 82.6 | 1 406.6 | 7.6 | 2 677.6 | ||
| TAEGM | 96.1 | 0.88 | 7.6 | 
| 标签 | 文本 | 
|---|---|
| Negative→Positive | Stay away from the sirloin dishes. People (I)【BERT_Replace】 don’t know what the heck is in this—usually【BERT_Insert】 it tastes like compacted beef, shred up and repackaged to look like a steak…. lolI(not)【BERT_Replace】 I’d even say the sirloin was nuked after reading these reviews. :)(Disgusting!)【BERT_Merge】 | 
| Negative→Positive | Ok, I know it’s Vegas and everything is expensive, but oh【BERT_Insert】 these were no(just mediocre)【BERT_Merge】 over priced deli sandwiches and small soggy potato pancakes. However, as in most casino spots, the staff trips above (over) 【BERT_Replace】themselves to make sure that you have everything that you need and that you aren’t waiting for good service. | 
Tab. 3 Display of adversarial examples generated by TAEGM on BERT
| 标签 | 文本 | 
|---|---|
| Negative→Positive | Stay away from the sirloin dishes. People (I)【BERT_Replace】 don’t know what the heck is in this—usually【BERT_Insert】 it tastes like compacted beef, shred up and repackaged to look like a steak…. lolI(not)【BERT_Replace】 I’d even say the sirloin was nuked after reading these reviews. :)(Disgusting!)【BERT_Merge】 | 
| Negative→Positive | Ok, I know it’s Vegas and everything is expensive, but oh【BERT_Insert】 these were no(just mediocre)【BERT_Merge】 over priced deli sandwiches and small soggy potato pancakes. However, as in most casino spots, the staff trips above (over) 【BERT_Replace】themselves to make sure that you have everything that you need and that you aren’t waiting for good service. | 
| 生成对抗样本的 模型 | 受攻击模型 | ||
|---|---|---|---|
| TEXTCNN1 | TEXTCNN2 | BERT | |
| TEXTCNN1 | 98.0 | 68.7 | 65.3 | 
| TEXTCNN2 | 71.0 | 92.9 | 67.7 | 
| BERT | 74.6 | 72.9 | 89.9 | 
Tab. 4 Success rate of transferable attacks on Yelp Reviews dataset
| 生成对抗样本的 模型 | 受攻击模型 | ||
|---|---|---|---|
| TEXTCNN1 | TEXTCNN2 | BERT | |
| TEXTCNN1 | 98.0 | 68.7 | 65.3 | 
| TEXTCNN2 | 71.0 | 92.9 | 67.7 | 
| BERT | 74.6 | 72.9 | 89.9 | 
| 数据集 | 训练集样本数 | 对抗样本数 | ACC/% | SR/% | 
|---|---|---|---|---|
| Yelp Reviews | 124 000 | 2 500 | 98.0 | 53.7 | 
| AG News | 124 000 | 2 500 | 94.7 | 51.0 | 
| IMDB Review | 25 000 | 2 500 | 93.3 | 52.5 | 
Tab. 5 Adversarial training results of TAEGM on three datasets
| 数据集 | 训练集样本数 | 对抗样本数 | ACC/% | SR/% | 
|---|---|---|---|---|
| Yelp Reviews | 124 000 | 2 500 | 98.0 | 53.7 | 
| AG News | 124 000 | 2 500 | 94.7 | 51.0 | 
| IMDB Review | 25 000 | 2 500 | 93.3 | 52.5 | 
| 1 | PAPERNOT N, McDANIEL P, SWAMI A, et al. Crafting adversarial input sequences for recurrent neural networks[C]// Proceedings of the 2016 IEEE Military Communications Conference. Piscataway: IEEE, 2016: 49-54. 10.1109/milcom.2016.7795300 | 
| 2 | SAMANGOUEI P, KABKAB M, CHELLAPPA R, et al. Defense-GAN: protecting classifiers against adversarial attacks using generative models[EB/OL]. (2018-05-18) [2022-07-13].. | 
| 3 | 潘文雯,王新宇,宋明黎,等. 对抗样本生成技术综述[J]. 软件学报, 2020, 31(1):67-81. | 
| PAN W W, WANG X Y, SONG M L, et al. Survey on generating adversarial examples[J]. Journal of Software, 2020, 31(1): 67-81. | |
| 4 | 王文琦,汪润,王丽娜,等. 面向中文文本倾向性分类的对抗样本生成方法[J]. 软件学报, 2019, 30(8):2415-2427. | 
| WANG W Q, WANG R, WANG L N, et al. Adversarial examples generation approach for tendency classification on Chinese texts[J]. Journal of Software, 2019, 30(8): 2415-2427. | |
| 5 | LI J, JI S, DU T, et al. TextBugger: generating adversarial text against real-world applications[C]// Proceedings of the 26th Annual Network and Distributed System Security Symposium. Reston, VA: Internet Society, 2019: No.23138. 10.14722/ndss.2019.23138 | 
| 6 | SONG L, YU X, PENG H T, et al. Universal adversarial attacks with natural triggers for text classification[C]// Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: ACL, 2021: 3724-3733. 10.18653/v1/2021.naacl-main.291 | 
| 7 | MAHESHWARY R, MAHESHWARY S, PUDI V. A strong baseline for query efficient attacks in a black box setting[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2021: 8396-8409. 10.18653/v1/2021.emnlp-main.661 | 
| 8 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[C]// Proceedings of the2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg, PA: ACL, 2019: 4171-4186. 10.18653/v1/n18-2 | 
| 9 | KULESHOV V, THAKOOR S, LAU T, et al. Adversarial examples for natural language classification problems[EB/OL]. [2022-07-13].. | 
| 10 | ALZANTOT M, SHARMA Y, ELGOHARY A, et al. Generating natural language adversarial examples[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2018: 2890-2896. 10.18653/v1/d18-1316 | 
| 11 | REN S, DENG Y, HE K, et al. Generating natural language adversarial examples through probability weighted word saliency[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2019: 1085-1097. 10.18653/v1/p19-1103 | 
| 12 | GARG S, RAMAKRISHNAN G. BAE: BERT-based adversarial examples for text classification[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural. Stroudsburg, PA: ACL, 2020: 6174-6181. 10.18653/v1/2020.emnlp-main.498 | 
| 13 | 仝鑫,王罗娜,王润正,等. 面向中文文本分类的词级对抗样本生成方法[J]. 信息网络安全, 2020, 20(9):12-16. 10.3969/j.issn.1671-1122.2020.09.003 | 
| TONG X, WANG L N, WANG R Z, et al. A generation method of word-level adversarial samples for Chinese text classification[J]. Netinfo Security, 2020, 20(9):12-16. 10.3969/j.issn.1671-1122.2020.09.003 | |
| 14 | MAHESHWARY R, MAHESHWARY S, PUDI V. Generating natural language attacks in a hard label black box setting[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 13525-13533. 10.1609/aaai.v35i15.17595 | 
| 15 | LI L, MA R, GUO Q, et al. BERT-ATTACK: adversarial attack against BERT using BERT[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2020: 6193-6202. 10.18653/v1/2020.emnlp-main.500 | 
| 16 | MA X, ZHOU C, LI X, et al. FlowSeq: non-autoregressive conditional sequence generation with generative flow[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, PA: ACL, 2019: 4282-4292. 10.18653/v1/d19-1437 | 
| 17 | LIU Y, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[EB/OL]. (2019-07-26) [2022-07-13].. | 
| 18 | CER D, YANG Y, KONG S Y, et al. Universal sentence encoder for English[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. Stroudsburg, PA: ACL, 2018: 169-174. 10.18653/v1/d18-2029 | 
| 19 | ZHANG X, ZHAO J, LeCUN Y. Character-level convolutional networks for text classification[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems — Volume 1. Cambridge: MIT Press, 2015:649-657. | 
| 20 | MAAS A L, DALY R E, PHAM P T, et al. Learning word vectors for sentiment analysis[C]// Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: ACL, 2011:142-150. | 
| 21 | JIN D, JIN Z, ZHOU J T, et al. Is BERT really robust? natural language attack on text classification and entailment[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 8018-8025. 10.1609/aaai.v34i05.6311 | 
| 22 | YE M, MIAO C, WANG T, et al. TextHoaxer: budgeted hard-label adversarial attacks on text[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2022: 3877-3884. 10.1609/aaai.v36i4.20303 | 
| 23 | LI D, ZHANG Y, PENG H, et al. Contextualized perturbation for textual adversarial attack[C]// Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: ACL, 2020: 5053-5069. 10.18653/v1/2021.naacl-main.400 | 
| [1] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. | 
| [2] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. | 
| [3] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. | 
| [4] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. | 
| [5] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. | 
| [6] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. | 
| [7] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. | 
| [8] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. | 
| [9] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. | 
| [10] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. | 
| [11] | Wenliang WEI, Yangping WANG, Biao YUE, Anzheng WANG, Zhe ZHANG. Deep learning model for infrared and visible image fusion based on illumination weight allocation and attention [J]. Journal of Computer Applications, 2024, 44(7): 2183-2191. | 
| [12] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. | 
| [13] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. | 
| [14] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. | 
| [15] | Yan ZHOU, Yang LI. Rectified cross pseudo supervision method with attention mechanism for stroke lesion segmentation [J]. Journal of Computer Applications, 2024, 44(6): 1942-1948. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||