Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (6): 1844-1851.DOI: 10.11772/j.issn.1001-9081.2021040574
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Weikang ZHANG, Sheng LIU(), Qian HUANG, Yuxin GUO
Received:
2021-04-13
Revised:
2021-06-28
Accepted:
2021-06-29
Online:
2022-06-22
Published:
2022-06-10
Contact:
Sheng LIU
About author:
ZHANG Weikang,born in 1996,M. S. candidate. His research interests include business statistics,intelligent computing.Supported by:
通讯作者:
刘升
作者简介:
张伟康(1996—),男,山东临沂人,硕士研究生,主要研究方向:商务统计、智能计算基金资助:
CLC Number:
Weikang ZHANG, Sheng LIU, Qian HUANG, Yuxin GUO. Equilibrium optimizer considering distance factor and elite evolutionary strategy[J]. Journal of Computer Applications, 2022, 42(6): 1844-1851.
张伟康, 刘升, 黄倩, 郭雨鑫. 考虑距离因素与精英进化策略的平衡优化器[J]. 《计算机应用》唯一官方网站, 2022, 42(6): 1844-1851.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021040574
算法 | 参数 |
---|---|
EO | |
LEO | |
m-EO | |
E-SFDBEO | |
PSO | |
DE | |
GWO | |
WOA |
Tab.1 Experimental parameters of each algorithm
算法 | 参数 |
---|---|
EO | |
LEO | |
m-EO | |
E-SFDBEO | |
PSO | |
DE | |
GWO | |
WOA |
编号 | 名称 | 范围 | 最优值 |
---|---|---|---|
Sphere | [-100,100] dim | 0 | |
Schwefel’2.22 | [-10,10] dim | 0 | |
Schwefel’1.2 | [-100,100] dim | 0 | |
Schwefel’2.21 | [-100,100] dim | 0 | |
Rosenbrock | [-30,30] dim | 0 | |
Quartic | [-1.28,1.28] dim | 0 | |
Rastrigin | [-5.12,5.12] dim | 0 | |
Ackley | [-32,32] dim | 0 | |
Griewank | [-600,600] dim | 0 | |
Apline | [-10,10] dim | 0 | |
Schaffer | [-100,100]2 | 0 | |
Kowalik | [-5,5]4 | 0.000 3 | |
Goldstein-price | [-2,2]2 | 3 |
Tab. 2 Benchmark test functions
编号 | 名称 | 范围 | 最优值 |
---|---|---|---|
Sphere | [-100,100] dim | 0 | |
Schwefel’2.22 | [-10,10] dim | 0 | |
Schwefel’1.2 | [-100,100] dim | 0 | |
Schwefel’2.21 | [-100,100] dim | 0 | |
Rosenbrock | [-30,30] dim | 0 | |
Quartic | [-1.28,1.28] dim | 0 | |
Rastrigin | [-5.12,5.12] dim | 0 | |
Ackley | [-32,32] dim | 0 | |
Griewank | [-600,600] dim | 0 | |
Apline | [-10,10] dim | 0 | |
Schaffer | [-100,100]2 | 0 | |
Kowalik | [-5,5]4 | 0.000 3 | |
Goldstein-price | [-2,2]2 | 3 |
函数 | 指标 | EO | LEO | m-EO | E-SFDBEO | PSO | DE | GWO | WOA |
---|---|---|---|---|---|---|---|---|---|
最优值 | 1.76E-15 | 3.59E-16 | 4.50E-206 | 4.05E-245 | 2.38E-04 | 1.87E+01 | 5.70E-10 | 5.13E-31 | |
最差值 | 1.88E-13 | 2.94E-13 | 1.38E-185 | 5.31E-216 | 4.84E-02 | 6.76E+01 | 3.05E-08 | 2.91E-25 | |
平均值 | 3.53E-14 | 5.17E-14 | 6.20E-187 | 1.77E-217 | 9.13E-03 | 3.60E+01 | 8.36E-09 | 1.15E-26 | |
标准差 | 4.20E-14 | 7.59E-14 | 0 | 0 | 1.16E-02 | 1.20E+01 | 7.00E-09 | 5.29E-26 | |
最优值 | 9.67E-10 | 1.26E-11 | 2.94E-107 | 5.27E-124 | 8.55E-03 | 1.10E+00 | 1.60E-06 | 1.91E-23 | |
最差值 | 2.43E-08 | 1.86E-09 | 4.76E-93 | 3.45E-113 | 3.94E-01 | 2.19E+00 | 1.58E-05 | 1.16E-17 | |
平均值 | 6.95E-09 | 8.21E-09 | 1.64E-94 | 1.73E-114 | 8.96E-02 | 1.64E+00 | 5.38E-06 | 6.18E-19 | |
标准差 | 4.84E-09 | 4.27E-09 | 8.69E-94 | 6.68E-114 | 9.71E-02 | 2.84E-01 | 2.95E-06 | 2.19E-18 | |
最优值 | 7.68E-04 | 1.19E-03 | 1.55E-195 | 3.23E-230 | 1.15E+02 | 3.11E+04 | 6.19E-02 | 4.38E+04 | |
最差值 | 4.81E+00 | 3.64E-01 | 5.50E-172 | 4.25E-200 | 1.65E+03 | 5.08E+04 | 3.22E+01 | 1.25E+05 | |
平均值 | 2.70E-01 | 7.44E-02 | 2.32E-173 | 1.42E-201 | 7.13E+02 | 4.19E+04 | 4.14E+00 | 7.93E+04 | |
标准差 | 8.79E-01 | 9.48E-02 | 0 | 0 | 3.91E+02 | 5.43E+03 | 7.17E+00 | 2.20E+04 | |
最优值 | 1.67E-04 | 1.11E-04 | 1.11E-102 | 1.12E-118 | 2.07E+00 | 3.58E+01 | 1.56E-02 | 1.03E+00 | |
最差值 | 7.66E-03 | 6.30E-03 | 6.26E-89 | 5.87E-105 | 9.12E+00 | 4.99E+01 | 1.16E-01 | 9.01E+01 | |
平均值 | 1.43E-03 | 1.40E-03 | 2.36E-90 | 2.03E-106 | 4.89E+00 | 4.27E+01 | 4.28E-02 | 6.66E+01 | |
标准差 | 1.44E-03 | 1.70E-03 | 1.15E-89 | 1.07E-105 | 1.68E+00 | 4.41E+00 | 2.60E-02 | 2.28E+01 | |
最优值 | 2.61E+01 | 2.61E+01 | 2.59E+01 | 2.44E+01 | 1.97E+01 | 2.86E+03 | 2.69E+01 | 2.78E+01 | |
最差值 | 2.87E+01 | 2.71E+01 | 2.87E+01 | 2.86E+01 | 3.98E+02 | 9.53E+03 | 2.89E+01 | 2.88E+01 | |
平均值 | 2.68E+01 | 2.68E+01 | 2.69E+01 | 2.64E+01 | 1.10E+02 | 5.70E+03 | 2.79E+01 | 2.86E+01 | |
标准差 | 5.34E-01 | 2.76E-01 | 7.86E-01 | 7.04E-01 | 9.36E+01 | 1.67E+03 | 7.31E-01 | 2.57E-01 | |
最优值 | 1.50E-03 | 1.43E-03 | 1.49E-05 | 6.07E-06 | 2.07E-02 | 1.15E-01 | 1.28E-03 | 1.93E-04 | |
最差值 | 7.82E-03 | 1.38E-02 | 9.70E-04 | 1.23E-04 | 7.18E-02 | 3.25E-01 | 1.24E-02 | 2.62E-02 | |
平均值 | 3.71E-03 | 4.05E-03 | 3.22E-04 | 3.11E-04 | 4.50E-02 | 1.90E-01 | 5.53E-03 | 9.58E-03 | |
标准差 | 1.60E-03 | 2.59E-03 | 2.89E-04 | 2.64E-04 | 1.57E-02 | 4.47E-02 | 2.70E-03 | 8.69E-03 | |
最优值 | 2.84E-13 | 1.14E-13 | 0 | 0 | 2.09E+01 | 1.06E+02 | 2.86E-05 | 0 | |
最差值 | 2.17E+00 | 2.03E+00 | 0 | 0 | 1.02E+02 | 1.53E+02 | 4.57E+01 | 1.14E-13 | |
平均值 | 1.72E-01 | 1.34E-01 | 0 | 0 | 4.87E+01 | 1.33E+02 | 1.53E+01 | 1.33E-14 | |
标准差 | 4.84E-01 | 4.37E-01 | 0 | 0 | 1.66E+01 | 1.16E+01 | 9.23E+00 | 3.23E-14 | |
最优值 | 8.47E-09 | 9.94E-09 | 8.88E-16 | 8.88E-16 | 1.33E-02 | 2.83E+00 | 4.44E-06 | 4.44E-15 | |
最差值 | 9.62E-08 | 1.80E-07 | 8.88E-16 | 8.88E-16 | 2.96E+00 | 3.95E+00 | 4.74E-05 | 5.06E-14 | |
平均值 | 3.79E-08 | 5.41E-08 | 8.88E-16 | 8.88E-16 | 1.49E+00 | 3.39E+00 | 1.78E-05 | 2.07E-14 | |
标准差 | 2.42E-08 | 3.91E-08 | 0 | 0 | 8.69E-01 | 2.49E-01 | 8.92E-06 | 1.20E-14 | |
最优值 | 4.33E-15 | 1.66E-15 | 0 | 0 | 8.38E-03 | 1.16E+00 | 1.28E-09 | 0 | |
最差值 | 9.92E-03 | 4.84E-13 | 0 | 0 | 3.41E-01 | 1.60E+00 | 9.93E-02 | 4.67E-01 | |
平均值 | 3.31E-04 | 8.56E-14 | 0 | 0 | 5.91E-02 | 1.34E+00 | 1.40E-02 | 2.93E-02 | |
标准差 | 1.81E-03 | 1.02E-13 | 0 | 0 | 6.62E-02 | 8.28E-02 | 2.18E-02 | 1.12E-01 | |
最优值 | 4.34E-10 | 8.37E-10 | 7.09E-106 | 2.84E-124 | 2.41E-03 | 4.65E+00 | 3.66E-06 | 2.49E-23 | |
最差值 | 4.74E-05 | 4.80E-05 | 5.98E-94 | 1.41E-113 | 1.53E+00 | 1.18E+01 | 1.16E-01 | 7.43E-16 | |
平均值 | 4.74E-06 | 3.12E-06 | 2.14E-95 | 4.88E-115 | 7.39E-02 | 7.86E+00 | 7.97E-03 | 3.85E-17 | |
标准差 | 1.27E-05 | 1.19E-05 | 1.09E-94 | 2.56E-114 | 2.78E-01 | 1.52E+00 | 2.06E-02 | 1.48E-16 | |
最优值 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
最差值 | 9.72E-03 | 9.73E-03 | 0 | 0 | 9.72E-03 | 9.72E-03 | 9.72E-03 | 3.72E-02 | |
平均值 | 4.21E-03 | 3.56E-03 | 0 | 0 | 6.71E-03 | 3.25E-03 | 7.30E-03 | 6.42E-03 | |
标准差 | 4.90E-03 | 4.76E-03 | 0 | 0 | 4.50E-03 | 3.61E-03 | 4.18E-03 | 7.56E-03 | |
最优值 | 3.09E-04 | 3.08E-04 | 3.08E-04 | 3.08E-04 | 3.08E-04 | 5.46E-04 | 3.15E-04 | 3.14E-04 | |
最差值 | 2.04E-02 | 2.04E-02 | 1.22E-03 | 7.52E-04 | 2.04E-02 | 1.67E-03 | 2.08E-02 | 1.81E-02 | |
平均值 | 3.87E-03 | 3.18E-03 | 4.94E-04 | 4.60E-04 | 1.35E-03 | 9.17E-04 | 4.61E-03 | 1.23E-03 | |
标准差 | 7.51E-03 | 6.86E-03 | 2.05E-04 | 1.64E-04 | 3.62E-03 | 2.57E-04 | 8.05E-03 | 3.20E-03 | |
最优值 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
最差值 | 3 | 3 | 3 | 3 | 3 | 3 | 8.40E+01 | 3.00E+01 | |
平均值 | 3 | 3 | 3 | 3 | 3 | 3 | 5.70E+00 | 4.80E+00 | |
标准差 | 2.46E-15 | 3.03E-15 | 1.53E-15 | 1.39E-15 | 1.81E-15 | 1.41E-15 | 1.48E+01 | 6.85E+00 |
Tab. 3 Experimental results of test functions
函数 | 指标 | EO | LEO | m-EO | E-SFDBEO | PSO | DE | GWO | WOA |
---|---|---|---|---|---|---|---|---|---|
最优值 | 1.76E-15 | 3.59E-16 | 4.50E-206 | 4.05E-245 | 2.38E-04 | 1.87E+01 | 5.70E-10 | 5.13E-31 | |
最差值 | 1.88E-13 | 2.94E-13 | 1.38E-185 | 5.31E-216 | 4.84E-02 | 6.76E+01 | 3.05E-08 | 2.91E-25 | |
平均值 | 3.53E-14 | 5.17E-14 | 6.20E-187 | 1.77E-217 | 9.13E-03 | 3.60E+01 | 8.36E-09 | 1.15E-26 | |
标准差 | 4.20E-14 | 7.59E-14 | 0 | 0 | 1.16E-02 | 1.20E+01 | 7.00E-09 | 5.29E-26 | |
最优值 | 9.67E-10 | 1.26E-11 | 2.94E-107 | 5.27E-124 | 8.55E-03 | 1.10E+00 | 1.60E-06 | 1.91E-23 | |
最差值 | 2.43E-08 | 1.86E-09 | 4.76E-93 | 3.45E-113 | 3.94E-01 | 2.19E+00 | 1.58E-05 | 1.16E-17 | |
平均值 | 6.95E-09 | 8.21E-09 | 1.64E-94 | 1.73E-114 | 8.96E-02 | 1.64E+00 | 5.38E-06 | 6.18E-19 | |
标准差 | 4.84E-09 | 4.27E-09 | 8.69E-94 | 6.68E-114 | 9.71E-02 | 2.84E-01 | 2.95E-06 | 2.19E-18 | |
最优值 | 7.68E-04 | 1.19E-03 | 1.55E-195 | 3.23E-230 | 1.15E+02 | 3.11E+04 | 6.19E-02 | 4.38E+04 | |
最差值 | 4.81E+00 | 3.64E-01 | 5.50E-172 | 4.25E-200 | 1.65E+03 | 5.08E+04 | 3.22E+01 | 1.25E+05 | |
平均值 | 2.70E-01 | 7.44E-02 | 2.32E-173 | 1.42E-201 | 7.13E+02 | 4.19E+04 | 4.14E+00 | 7.93E+04 | |
标准差 | 8.79E-01 | 9.48E-02 | 0 | 0 | 3.91E+02 | 5.43E+03 | 7.17E+00 | 2.20E+04 | |
最优值 | 1.67E-04 | 1.11E-04 | 1.11E-102 | 1.12E-118 | 2.07E+00 | 3.58E+01 | 1.56E-02 | 1.03E+00 | |
最差值 | 7.66E-03 | 6.30E-03 | 6.26E-89 | 5.87E-105 | 9.12E+00 | 4.99E+01 | 1.16E-01 | 9.01E+01 | |
平均值 | 1.43E-03 | 1.40E-03 | 2.36E-90 | 2.03E-106 | 4.89E+00 | 4.27E+01 | 4.28E-02 | 6.66E+01 | |
标准差 | 1.44E-03 | 1.70E-03 | 1.15E-89 | 1.07E-105 | 1.68E+00 | 4.41E+00 | 2.60E-02 | 2.28E+01 | |
最优值 | 2.61E+01 | 2.61E+01 | 2.59E+01 | 2.44E+01 | 1.97E+01 | 2.86E+03 | 2.69E+01 | 2.78E+01 | |
最差值 | 2.87E+01 | 2.71E+01 | 2.87E+01 | 2.86E+01 | 3.98E+02 | 9.53E+03 | 2.89E+01 | 2.88E+01 | |
平均值 | 2.68E+01 | 2.68E+01 | 2.69E+01 | 2.64E+01 | 1.10E+02 | 5.70E+03 | 2.79E+01 | 2.86E+01 | |
标准差 | 5.34E-01 | 2.76E-01 | 7.86E-01 | 7.04E-01 | 9.36E+01 | 1.67E+03 | 7.31E-01 | 2.57E-01 | |
最优值 | 1.50E-03 | 1.43E-03 | 1.49E-05 | 6.07E-06 | 2.07E-02 | 1.15E-01 | 1.28E-03 | 1.93E-04 | |
最差值 | 7.82E-03 | 1.38E-02 | 9.70E-04 | 1.23E-04 | 7.18E-02 | 3.25E-01 | 1.24E-02 | 2.62E-02 | |
平均值 | 3.71E-03 | 4.05E-03 | 3.22E-04 | 3.11E-04 | 4.50E-02 | 1.90E-01 | 5.53E-03 | 9.58E-03 | |
标准差 | 1.60E-03 | 2.59E-03 | 2.89E-04 | 2.64E-04 | 1.57E-02 | 4.47E-02 | 2.70E-03 | 8.69E-03 | |
最优值 | 2.84E-13 | 1.14E-13 | 0 | 0 | 2.09E+01 | 1.06E+02 | 2.86E-05 | 0 | |
最差值 | 2.17E+00 | 2.03E+00 | 0 | 0 | 1.02E+02 | 1.53E+02 | 4.57E+01 | 1.14E-13 | |
平均值 | 1.72E-01 | 1.34E-01 | 0 | 0 | 4.87E+01 | 1.33E+02 | 1.53E+01 | 1.33E-14 | |
标准差 | 4.84E-01 | 4.37E-01 | 0 | 0 | 1.66E+01 | 1.16E+01 | 9.23E+00 | 3.23E-14 | |
最优值 | 8.47E-09 | 9.94E-09 | 8.88E-16 | 8.88E-16 | 1.33E-02 | 2.83E+00 | 4.44E-06 | 4.44E-15 | |
最差值 | 9.62E-08 | 1.80E-07 | 8.88E-16 | 8.88E-16 | 2.96E+00 | 3.95E+00 | 4.74E-05 | 5.06E-14 | |
平均值 | 3.79E-08 | 5.41E-08 | 8.88E-16 | 8.88E-16 | 1.49E+00 | 3.39E+00 | 1.78E-05 | 2.07E-14 | |
标准差 | 2.42E-08 | 3.91E-08 | 0 | 0 | 8.69E-01 | 2.49E-01 | 8.92E-06 | 1.20E-14 | |
最优值 | 4.33E-15 | 1.66E-15 | 0 | 0 | 8.38E-03 | 1.16E+00 | 1.28E-09 | 0 | |
最差值 | 9.92E-03 | 4.84E-13 | 0 | 0 | 3.41E-01 | 1.60E+00 | 9.93E-02 | 4.67E-01 | |
平均值 | 3.31E-04 | 8.56E-14 | 0 | 0 | 5.91E-02 | 1.34E+00 | 1.40E-02 | 2.93E-02 | |
标准差 | 1.81E-03 | 1.02E-13 | 0 | 0 | 6.62E-02 | 8.28E-02 | 2.18E-02 | 1.12E-01 | |
最优值 | 4.34E-10 | 8.37E-10 | 7.09E-106 | 2.84E-124 | 2.41E-03 | 4.65E+00 | 3.66E-06 | 2.49E-23 | |
最差值 | 4.74E-05 | 4.80E-05 | 5.98E-94 | 1.41E-113 | 1.53E+00 | 1.18E+01 | 1.16E-01 | 7.43E-16 | |
平均值 | 4.74E-06 | 3.12E-06 | 2.14E-95 | 4.88E-115 | 7.39E-02 | 7.86E+00 | 7.97E-03 | 3.85E-17 | |
标准差 | 1.27E-05 | 1.19E-05 | 1.09E-94 | 2.56E-114 | 2.78E-01 | 1.52E+00 | 2.06E-02 | 1.48E-16 | |
最优值 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
最差值 | 9.72E-03 | 9.73E-03 | 0 | 0 | 9.72E-03 | 9.72E-03 | 9.72E-03 | 3.72E-02 | |
平均值 | 4.21E-03 | 3.56E-03 | 0 | 0 | 6.71E-03 | 3.25E-03 | 7.30E-03 | 6.42E-03 | |
标准差 | 4.90E-03 | 4.76E-03 | 0 | 0 | 4.50E-03 | 3.61E-03 | 4.18E-03 | 7.56E-03 | |
最优值 | 3.09E-04 | 3.08E-04 | 3.08E-04 | 3.08E-04 | 3.08E-04 | 5.46E-04 | 3.15E-04 | 3.14E-04 | |
最差值 | 2.04E-02 | 2.04E-02 | 1.22E-03 | 7.52E-04 | 2.04E-02 | 1.67E-03 | 2.08E-02 | 1.81E-02 | |
平均值 | 3.87E-03 | 3.18E-03 | 4.94E-04 | 4.60E-04 | 1.35E-03 | 9.17E-04 | 4.61E-03 | 1.23E-03 | |
标准差 | 7.51E-03 | 6.86E-03 | 2.05E-04 | 1.64E-04 | 3.62E-03 | 2.57E-04 | 8.05E-03 | 3.20E-03 | |
最优值 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
最差值 | 3 | 3 | 3 | 3 | 3 | 3 | 8.40E+01 | 3.00E+01 | |
平均值 | 3 | 3 | 3 | 3 | 3 | 3 | 5.70E+00 | 4.80E+00 | |
标准差 | 2.46E-15 | 3.03E-15 | 1.53E-15 | 1.39E-15 | 1.81E-15 | 1.41E-15 | 1.48E+01 | 6.85E+00 |
函数 | PSO | DE | EO | m-EO | LEO | WOA | GWO |
---|---|---|---|---|---|---|---|
3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | |
3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | |
3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | |
3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | |
2.23E-09 | 3.02E-11 | 1.30E-03 | 5.60E-03 | 2.10E-03 | 5.49E-11 | 1.10E-08 | |
3.02E-11 | 3.02E-11 | 2.37E-10 | 4.85E-02 | 1.78E-10 | 8.35E-08 | 3.69E-11 | |
1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 | 1.10E-02 | 1.21E-12 | ||
1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 | 4.38E-12 | 1.21E-12 | ||
1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 | 1.40E-03 | 1.21E-12 | ||
3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | |
6.92E-07 | 1.21E-12 | 2.94E-07 | 5.33E-06 | 2.93E-05 | 6.25E-10 | ||
8.70E-03 | 6.066E-11 | 6.91E-04 | 1.40E-03 | 2.30E-03 | 3.01E-04 | 6.74E-06 | |
2.86E-11 | 1.20E-03 | 2.92E-11 | 2.35E-11 | 3.01E-11 | 3.02E-11 | 3.02E-11 |
Tab. 4 Results of Wilcoxon rank sum test
函数 | PSO | DE | EO | m-EO | LEO | WOA | GWO |
---|---|---|---|---|---|---|---|
3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | |
3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | |
3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | |
3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | |
2.23E-09 | 3.02E-11 | 1.30E-03 | 5.60E-03 | 2.10E-03 | 5.49E-11 | 1.10E-08 | |
3.02E-11 | 3.02E-11 | 2.37E-10 | 4.85E-02 | 1.78E-10 | 8.35E-08 | 3.69E-11 | |
1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 | 1.10E-02 | 1.21E-12 | ||
1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 | 4.38E-12 | 1.21E-12 | ||
1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 | 1.40E-03 | 1.21E-12 | ||
3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | 3.02E-11 | |
6.92E-07 | 1.21E-12 | 2.94E-07 | 5.33E-06 | 2.93E-05 | 6.25E-10 | ||
8.70E-03 | 6.066E-11 | 6.91E-04 | 1.40E-03 | 2.30E-03 | 3.01E-04 | 6.74E-06 | |
2.86E-11 | 1.20E-03 | 2.92E-11 | 2.35E-11 | 3.01E-11 | 3.02E-11 | 3.02E-11 |
函数 | 算法 | 最优值 | 平均值 | 标准差 |
---|---|---|---|---|
EO | 1.755E-15 | 3.532E-13 | 4.211E-14 | |
E-EO | 3.903E-155 | 1.890E-116 | 1.033E-115 | |
SFDBEO | 1.872E-204 | 1.096E-191 | 0 | |
E-SFDBEO | 1.709E-242 | 5.220E-221 | 0 | |
EO | 1.759E-04 | 1.526E-03 | 1.426E-03 | |
E-EO | 1.164E-73 | 5.838E-46 | 3.198E-45 | |
SFDBEO | 5.522E-102 | 1.838E-94 | 6.325E-94 | |
E-SFDBEO | 3.420E-121 | 1.059E-106 | 5.731E-106 | |
EO | 4.343E-10 | 4.735E-06 | 1.266E-06 | |
E-EO | 1.328E-91 | 1.537E-65 | 6.726E-65 | |
SFDBEO | 3.473E-106 | 3.332E-98 | 1.787E-97 | |
E-SFDBEO | 5.886E-124 | 1.107E-115 | 6.029E-115 | |
EO | 3.086E-04 | 3.873E-02 | 7.505E-03 | |
E-EO | 3.075E-04 | 4.497E-04 | 2.007E-04 | |
SFDBEO | 3.075E-04 | 3.084E-03 | 6.896E-03 | |
E-SFDBEO | 3.075E-04 | 4.225E-04 | 1.494E-04 |
Tab. 5 Experimental results of EO algorithms improved by different strategies for test functions
函数 | 算法 | 最优值 | 平均值 | 标准差 |
---|---|---|---|---|
EO | 1.755E-15 | 3.532E-13 | 4.211E-14 | |
E-EO | 3.903E-155 | 1.890E-116 | 1.033E-115 | |
SFDBEO | 1.872E-204 | 1.096E-191 | 0 | |
E-SFDBEO | 1.709E-242 | 5.220E-221 | 0 | |
EO | 1.759E-04 | 1.526E-03 | 1.426E-03 | |
E-EO | 1.164E-73 | 5.838E-46 | 3.198E-45 | |
SFDBEO | 5.522E-102 | 1.838E-94 | 6.325E-94 | |
E-SFDBEO | 3.420E-121 | 1.059E-106 | 5.731E-106 | |
EO | 4.343E-10 | 4.735E-06 | 1.266E-06 | |
E-EO | 1.328E-91 | 1.537E-65 | 6.726E-65 | |
SFDBEO | 3.473E-106 | 3.332E-98 | 1.787E-97 | |
E-SFDBEO | 5.886E-124 | 1.107E-115 | 6.029E-115 | |
EO | 3.086E-04 | 3.873E-02 | 7.505E-03 | |
E-EO | 3.075E-04 | 4.497E-04 | 2.007E-04 | |
SFDBEO | 3.075E-04 | 3.084E-03 | 6.896E-03 | |
E-SFDBEO | 3.075E-04 | 4.225E-04 | 1.494E-04 |
函数 | ||||
---|---|---|---|---|
平均精度 | 标准差 | 平均精度 | 标准差 | |
1.087E-206 | 0 | 2.913E-205 | 0 | |
2.970E-108 | 1.608E-107 | 1.088E-107 | 5.938E-107 | |
4.167E-184 | 0 | 8.276E-185 | 0 | |
1.053E-99 | 5.727E-99 | 1.764E-100 | 9.018E-100 | |
4.953E+02 | 7.521E-01 | 9.927E+02 | 1.140E+00 | |
3.984E-04 | 4.430E-04 | 4.042E-04 | 3.734E-04 | |
0 | 0 | 0 | 0 | |
8.882E-16 | 0 | 8.882E-16 | 0 | |
0 | 0 | 0 | 0 | |
3.921E-109 | 1.381E-108 | 2.722E-107 | 9.682E-107 |
Tab. 6 Experimental results of large-scale test functions
函数 | ||||
---|---|---|---|---|
平均精度 | 标准差 | 平均精度 | 标准差 | |
1.087E-206 | 0 | 2.913E-205 | 0 | |
2.970E-108 | 1.608E-107 | 1.088E-107 | 5.938E-107 | |
4.167E-184 | 0 | 8.276E-185 | 0 | |
1.053E-99 | 5.727E-99 | 1.764E-100 | 9.018E-100 | |
4.953E+02 | 7.521E-01 | 9.927E+02 | 1.140E+00 | |
3.984E-04 | 4.430E-04 | 4.042E-04 | 3.734E-04 | |
0 | 0 | 0 | 0 | |
8.882E-16 | 0 | 8.882E-16 | 0 | |
0 | 0 | 0 | 0 | |
3.921E-109 | 1.381E-108 | 2.722E-107 | 9.682E-107 |
1 | FARAMARZI A, HEIDARINEJAD M, STEPHENS B, et al. Equilibrium optimizer: a novel optimization algorithm[J]. Knowledge-Based Systems, 2020, 191: No.105190. 10.1016/j.knosys.2019.105190 |
2 | 杨蕾,李胜男,黄伟,等. 基于平衡优化器的含高比例风光新能源电网无功优化[J]. 电力系统及其自动化学报, 2021, 33(4):32-39. 10.19635/j.cnki.csu-epsa.000555 |
YANG L, LI S N, HUANG W, et al. Reactive Power optimization of power grid with high-penetration wind and solar renewable energies based on equilibrium optimizer[J]. Proceedings of the CSU-EPSA, 2021, 33(4):32-39. 10.19635/j.cnki.csu-epsa.000555 | |
3 | KHARRICH M, KAMEL S, ABDEEN M, et al. Developed approach based on equilibrium optimizer for optimal design of hybrid PV/wind/diesel/battery microgrid in Dakhla, Morocco[J]. IEEE Access, 2021, 9:13655-13670. 10.1109/ACCESS.2021.3051573 |
4 | TOO J, MIRJALILI S. General learning equilibrium optimizer: a new feature selection method for biological data classification[J]. Applied Artificial Intelligence, 2021, 35(3): 247-263. 10.1080/08839514.2020.1861407 |
5 | 杨柳庆,杨婷婷,王鹏飞,等. 一种基于莱维飞行的新型改进平衡全局优化算法[J]. 宇航计测技术, 2020, 40(5): 62-69. 10.12060/j.issn.1000-7202.2020.05.10 |
YANG L Q, YANG T T, WANG P F, et al. A new improved equilibrium global optimization algorithm based on Lévy flight[J]. Journal of Astronautic Metrology and Measurement, 2020, 40(5):62-69. 10.12060/j.issn.1000-7202.2020.05.10 | |
6 | GUPTA S, DEEP K, MIRJALILI S. An efficient equilibrium optimizer with mutation strategy for numerical optimization[J]. Applied Soft Computing, 2020, 96: No.106542. 10.1016/j.asoc.2020.106542 |
7 | WUNNAVA A, NAIK M K, PANDA R, et al. A novel interdependence based multilevel thresholding technique using adaptive equilibrium optimizer[J]. Engineering Applications of Artificial Intelligence, 2020, 94: No.103836. 10.1016/j.engappai.2020.103836 |
8 | SAYED G I, KHORIBA G, HAGGAG M H. A novel chaotic equilibrium optimizer algorithm with S-shaped and V-shaped transfer functions for feature selection[J]. Journal of Ambient Intelligence and Humanized Computing, 2022, 13: 3137-3162. 10.1007/s12652-021-03151-7 |
9 | ABDEL-BASSET M, MOHAMED R, MIRJALILI S, et al. Solar photovoltaic parameter estimation using an improved equilibrium optimizer[J]. Solar Energy, 2020, 209:694-708. 10.1016/j.solener.2020.09.032 |
10 | KAHRAMAN H T, ARAS S, GEDIKLI E. Fitness-Distance Balance (FDB): a new selection method for meta-heuristic search algorithms[J]. Knowledge-Based Systems, 2020, 190: No.105169. 10.1016/j.knosys.2019.105169 |
11 | DUMAN S, KAHRAMAN H T, GUVENC U, et al. Development of a Lévy flight and FDB-based coyote optimization algorithm for global optimization and real-world ACOPF problems[J]. Soft Computing, 2021, 25(8):6577-6617. 10.1007/s00500-021-05654-z |
12 | LI C Y, LI J, CHEN H L, et al. Memetic Harris hawks optimization: developments and perspectives on project scheduling and QoS-aware web service composition[J]. Expert Systems with Applications, 2021, 171: No.114529. 10.1016/j.eswa.2020.114529 |
13 | BARSHANDEH S, PIRI F, SANGANI S R. HMPA: an innovative hybrid multi-population algorithm based on artificial ecosystem-based and Harris hawks optimization algorithms for engineering problems [J/OL]. Engineering with Computers, 2020(35) [2021-04-13]. . |
14 | CHEN H, HEIDARI A A, CHEN H L, et al. Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies[J]. Future Generation Computer Systems, 2020, 111:175-198. 10.1016/j.future.2020.04.008 |
15 | 周方俊,王向军,张民. 基于t分布变异的进化规划[J]. 电子学报, 2008, 36(4):667-671. 10.3321/j.issn:0372-2112.2008.04.011 |
ZHOU F J, WANG X J, ZHANG M. Evolutionary programming using mutations based on the t probability distribution[J]. Acta Electronica Sinica, 2008, 36(4):667-671. 10.3321/j.issn:0372-2112.2008.04.011 | |
16 | KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of the 1995 International Conference on Neural Networks. Piscataway: IEEE, 1995: 1942-1948. 10.1109/icnn.1995.488968 |
17 | STORN R, PRICE K. Differential evolution — a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4):341-359. 10.1023/a:1008202821328 |
18 | MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69:46-61. 10.1016/j.advengsoft.2013.12.007 |
19 | MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. 10.1016/j.advengsoft.2016.01.008 |
[1] | Dong LIU, Chenhang LI, Changmao WU, Faxin RU, Yuanyuan XIA. Automatic design of optical systems based on correctable reinforced search genetic algorithm [J]. Journal of Computer Applications, 2024, 44(9): 2838-2847. |
[2] | Yan LI, Dazhi PAN, Siqing ZHENG. Improved adaptive large neighborhood search algorithm for multi-depot vehicle routing problem with time window [J]. Journal of Computer Applications, 2024, 44(6): 1897-1904. |
[3] | Xiuxi WEI, Maosong PENG, Huajuan HUANG. Node coverage optimization of wireless sensor network based on multi-strategy improved butterfly optimization algorithm [J]. Journal of Computer Applications, 2024, 44(4): 1009-1017. |
[4] | Yun OU, Kaiqing ZHOU, Pengfei YIN, Xuewei LIU. Improved grey wolf optimizer algorithm based on dual convergence factor strategy [J]. Journal of Computer Applications, 2023, 43(9): 2679-2685. |
[5] | Chungang HAN, Yonghui LIU. Face liveness detection algorithm based on GhostNet and feature fusion [J]. Journal of Computer Applications, 2023, 43(8): 2588-2592. |
[6] | Hao GAO, Qingke ZHANG, Xianglong BU, Junqing LI, Huaxiang ZHANG. Teaching-learning-based optimization algorithm based on cooperative mutation and Lévy flight strategy and its application [J]. Journal of Computer Applications, 2023, 43(5): 1355-1364. |
[7] | Xuesen MA, Xuemei XU, Gonghui JIANG, Yan QIAO, Tianbao ZHOU. Hybrid adaptive particle swarm optimization algorithm for workflow scheduling [J]. Journal of Computer Applications, 2023, 43(2): 474-483. |
[8] | Mengjian ZHANG, Deguang WANG, Min WANG, Jing YANG. Several novel intelligent optimization algorithms for solving constrained engineering problems and their prospects [J]. Journal of Computer Applications, 2022, 42(2): 534-541. |
[9] | Xiao GUO, Chunshan LI, Yuyue ZHANG, Dianhui CHU. Service integration method based on adaptive multi‑objective reinforcement learning [J]. Journal of Computer Applications, 2022, 42(11): 3500-3505. |
[10] | WANG Bo, LIU Liansheng, HAN Shaocheng, ZHU Shixing. Hybrid multi-objective grasshopper optimization algorithm based on fusion of multiple strategies [J]. Journal of Computer Applications, 2020, 40(9): 2670-2676. |
[11] | ZHANG Xuyuan, WANG Yan. Adaptive intensity fitting model for segmentation of images with intensity inhomogeneity [J]. Journal of Computer Applications, 2019, 39(9): 2719-2725. |
[12] | XIE Yonghua, HAN Liping. Local binary pattern based on dominant gradient encoding for pollen image recognition [J]. Journal of Computer Applications, 2018, 38(6): 1765-1770. |
[13] | XIE Benming, HAN Mingming, ZHANG Pan, ZHANG Wei. Optimization algorithm of dynamic time warping for speech recognition of aircraft towing vehicle [J]. Journal of Computer Applications, 2018, 38(6): 1771-1776. |
[14] | WANG Xiaojing, PENG Hu, DENG Changshou, HUANG Haiyan, ZHANG Yan, TAN Xujie. Firefly algorithm based on uniform local search and variable step size [J]. Journal of Computer Applications, 2018, 38(3): 715-721. |
[15] | LI Wei, LYU Naiguang, DONG Mingli, LOU Xiaoping. Robot hand-eye calibration by convex relaxation global optimization [J]. Journal of Computer Applications, 2017, 37(5): 1451-1455. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||