Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (9): 2775-2783.DOI: 10.11772/j.issn.1001-9081.2022081266
• Data science and technology • Previous Articles Next Articles
Guoshuai MA1,2, Yuhua QIAN1,2,3, Yayu ZHANG1,2, Junxia LI1,2, Guoqing LIU1,2
Received:
2022-08-26
Revised:
2022-11-04
Accepted:
2022-11-14
Online:
2023-01-11
Published:
2023-09-10
Contact:
Yuhua QIAN
About author:
MA Guoshuai, born in 1992, Ph. D. candidate. His research interests include complex network, data mining.Supported by:
马国帅1,2, 钱宇华1,2,3, 张亚宇1,2, 李俊霞1,2, 刘郭庆1,2
通讯作者:
钱宇华
作者简介:
马国帅(1992—),男,山西吕梁人,博士研究生,CCF会员,主要研究方向:复杂网络、数据挖掘基金资助:
CLC Number:
Guoshuai MA, Yuhua QIAN, Yayu ZHANG, Junxia LI, Guoqing LIU. Scientific collaboration potential prediction based on dynamic heterogeneous information fusion[J]. Journal of Computer Applications, 2023, 43(9): 2775-2783.
马国帅, 钱宇华, 张亚宇, 李俊霞, 刘郭庆. 动态异构信息融合的科研合作潜力预测[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2775-2783.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022081266
序号 | 实体 | 属性 | 类型 |
---|---|---|---|
1 | 论文 | 题目 | Sting |
2 | 摘要 | String | |
3 | 作者 | 姓名 | String |
4 | 发表论文总量 | Int | |
5 | 机构 | 名称 | String |
6 | 发表论文总量 | Int | |
7 | 发表论文总引用量 | Int | |
8 | 经度 | Float | |
9 | 纬度 | Float | |
10 | 期刊 | 名称 | String |
11 | 收录论文总量 | Int | |
12 | 收录论文总引用量 | Int | |
13 | 期刊等级 | String |
Tab. 1 Entities and related information in collaboration network of CCF-recommended journals
序号 | 实体 | 属性 | 类型 |
---|---|---|---|
1 | 论文 | 题目 | Sting |
2 | 摘要 | String | |
3 | 作者 | 姓名 | String |
4 | 发表论文总量 | Int | |
5 | 机构 | 名称 | String |
6 | 发表论文总量 | Int | |
7 | 发表论文总引用量 | Int | |
8 | 经度 | Float | |
9 | 纬度 | Float | |
10 | 期刊 | 名称 | String |
11 | 收录论文总量 | Int | |
12 | 收录论文总引用量 | Int | |
13 | 期刊等级 | String |
科研合作异构网络 | 合作关系 | ||||||
---|---|---|---|---|---|---|---|
起始年 | 终止年 | 论文数 | 作者数 | 链接数 | 起始年 | 终止年 | 链接数 |
1998 | 2007 | 132 460 | 156 510 | 323 220 | 2008 | 2010 | 197 |
1999 | 2008 | 142 494 | 170 928 | 355 766 | 2009 | 2011 | 230 |
2000 | 2009 | 153 306 | 187 125 | 392 043 | 2010 | 2012 | 324 |
2001 | 2010 | 165 329 | 204 332 | 431 078 | 2011 | 2013 | 351 |
2002 | 2011 | 177 846 | 223 107 | 473 775 | 2012 | 2014 | 470 |
2003 | 2012 | 191 038 | 243 473 | 519 827 | 2013 | 2015 | 556 |
Tab. 2 Detailed information of dataset of collaboration heterogeneous network of CCF-recommended journals
科研合作异构网络 | 合作关系 | ||||||
---|---|---|---|---|---|---|---|
起始年 | 终止年 | 论文数 | 作者数 | 链接数 | 起始年 | 终止年 | 链接数 |
1998 | 2007 | 132 460 | 156 510 | 323 220 | 2008 | 2010 | 197 |
1999 | 2008 | 142 494 | 170 928 | 355 766 | 2009 | 2011 | 230 |
2000 | 2009 | 153 306 | 187 125 | 392 043 | 2010 | 2012 | 324 |
2001 | 2010 | 165 329 | 204 332 | 431 078 | 2011 | 2013 | 351 |
2002 | 2011 | 177 846 | 223 107 | 473 775 | 2012 | 2014 | 470 |
2003 | 2012 | 191 038 | 243 473 | 519 827 | 2013 | 2015 | 556 |
算法 | 合作者推荐/% | 合作潜力预测 | ||
---|---|---|---|---|
精确率 | 召回率 | F1 | MSE损失 | |
决策树 | 26.86 | 28.44 | 27.99 | 1.636 0 |
GCN | 71.55 | 80.10 | 74.48 | 0.146 7 |
GAT | 70.98 | 78.60 | 74.34 | 0.146 5 |
GraphSAGE | 74.82 | 81.56 | 75.83 | 0.146 4 |
HAN | 73.32 | — | — | 0.146 0 |
CPP | 76.29 | 81.78 | 75.57 | 0.144 6 |
Tab. 3 Performance comparison of CPP and other algorithms
算法 | 合作者推荐/% | 合作潜力预测 | ||
---|---|---|---|---|
精确率 | 召回率 | F1 | MSE损失 | |
决策树 | 26.86 | 28.44 | 27.99 | 1.636 0 |
GCN | 71.55 | 80.10 | 74.48 | 0.146 7 |
GAT | 70.98 | 78.60 | 74.34 | 0.146 5 |
GraphSAGE | 74.82 | 81.56 | 75.83 | 0.146 4 |
HAN | 73.32 | — | — | 0.146 0 |
CPP | 76.29 | 81.78 | 75.57 | 0.144 6 |
1 | SHRUM W, GENUTH J, CHOMPALOV I. Structures of Scientific Collaboration[M]. Cambridge: MIT Press, 2007:7-15. 10.7551/mitpress/7461.001.0001 |
2 | EBADI A, SCHIFFAUEROVA A. How to become an important player in scientific collaboration networks?[J]. Journal of Informetrics, 2015, 9(4): 809-825. 10.1016/j.joi.2015.08.002 |
3 | YANG C, SUN J S, MA J, et al. Scientific collaborator recommendation in heterogeneous bibliographic networks[C]// Proceedings of the 48th Hawaii International Conference on System Sciences. Piscataway: IEEE, 2015: 552-561. 10.1109/hicss.2015.73 |
4 | KONG X J, JIANG H Z, WANG W, et al. Exploring dynamic research interest and academic influence for scientific collaborator recommendation[J]. Scientometrics, 2017, 113(1): 369-385. 10.1007/s11192-017-2485-9 |
5 | PRADHAN T, PAL S. A multi-level fusion based decision support system for academic collaborator recommendation[J]. Knowledge-Based Systems, 2020, 197: No.105784. 10.1016/j.knosys.2020.105784 |
6 | 艾科,马国帅,杨凯凯,等. 一种基于集成学习的科研合作者潜力预测分类方法[J]. 计算机研究与发展, 2019, 56(7):1383-1395. 10.7544/issn1000-1239.2019.20180641 |
AI K, MA G S, YANG K K, et al. A classification method of scientific collaborator potential prediction based on ensemble learning[J]. Journal of Computer Research and Development, 2019, 56(7):1383-1395. 10.7544/issn1000-1239.2019.20180641 | |
7 | FORTUNATO S, BERGSTROM C T, BÖRNER K, et al. Science of science[J]. Science, 2018, 359(6379): No.eaao0185. 10.1126/science.aao0185 |
8 | XIA F, WANG W, BEKELE T M, et al. Big scholarly data: a survey[J]. IEEE Transactions on Big Data, 2017, 3(1): 18-35. 10.1109/tbdata.2016.2641460 |
9 | SHARMA D, KUMAR B, CHAND S. Recommending researchers in machine learning based on author-topic model[EB/OL]. (2021-09-05) [2022-05-31].. |
10 | TANG J, WU S, SUN J M, et al. Cross-domain collaboration recommendation[C]// Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2012: 1285-1293. 10.1145/2339530.2339730 |
11 | 周亦敏,黄俊. 基于BERT的学术合作者推荐研究[J]. 计算机技术与发展, 2021, 31(3):45-51. 10.3969/j.issn.1673-629X.2021.03.008 |
ZHOU Y M, HUANG J. Research on BERT-based academic collaborator recommendation[J]. Computer Technology and Development, 2021, 31(3): 45-51. 10.3969/j.issn.1673-629X.2021.03.008 | |
12 | 蒲姗姗. 基于知识互补的科研合作专家推荐模型研究[J]. 情报理论与实践, 2018, 41(8): 96-101. |
PU S S. Expert recommendation model in scientific and technical collaboration based on complementary knowledge[J]. Information Studies: Theory and Application, 2018, 41(8): 96-101. | |
13 | 黄璐,倪兴兴,程坷飞,等. 基于二模网络链路预测的合作者识别方法研究[J]. 情报学报, 2020, 39(9):906-913. 10.3772/j.issn.1000-0135.2020.09.003 |
HUANG L, NI X X, CHENG K F, et al. Identification of potential research partners based on two-mode network analysis[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(9):906-913. 10.3772/j.issn.1000-0135.2020.09.003 | |
14 | 张鑫,文奕,许海云. 一种融合表示学习与主题表征的作者合作预测模型[J]. 数据分析与知识发现, 2021, 5(3): 88-100. 10.11925/infotech.2096-3467.2020.0515 |
ZHANG X, WEN Y, XU H Y. A prediction model with network representation learning and topic model for author collaboration[J]. Data Analysis and Knowledge Discovery, 2021, 5(3): 88-100. 10.11925/infotech.2096-3467.2020.0515 | |
15 | 熊回香,杨雪萍,蒋武轩,等. 基于学术能力及合作关系网络的学者推荐研究[J]. 情报科学, 2019, 37(5): 71-78. |
XIONG H X, YANG X P, JIANG W X, et al. Scholars recommend research based on academic competence and collaborative networks[J]. Information Science, 2019, 37(5): 71-78. | |
16 | CHUAN P M, SON L H, ALI M, et al. Link prediction in co-authorship networks based on hybrid content similarity metric[J]. Applied Intelligence, 2018, 48(8): 2470-2486. 10.1007/s10489-017-1086-x |
17 | XIA F, CHEN Z, WANG W, et al. MVCWalker: random walk-based most valuable collaborators recommendation exploiting academic factors[J]. IEEE Transactions on Emerging Topics in Computing, 2014, 2(3): 364-375. 10.1109/tetc.2014.2356505 |
18 | 林原,王凯巧,刘海峰,等. 网络表示学习在学者科研合作预测中的应用研究[J]. 情报学报, 2020, 39(4):367-373. 10.3772/j.issn.1000-0135.2020.04.003 |
LIN Y, WANG K Q, LIU H F, et al. Application of network representation learning in the prediction of scholar academic cooperation[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(4): 367-373. 10.3772/j.issn.1000-0135.2020.04.003 | |
19 | WANG W, LIU J Y, TANG T, et al. Attributed collaboration network embedding for academic relationship mining[J]. ACM Transactions on the Web, 2021, 15(1): No.4. 10.1145/3409736 |
20 | 艾科. 科研工作者合作潜力预测问题研究[D]. 太原:山西大学, 2019: 20-45. 10.7544/issn1000-1239.2019.20180641 |
AI K. Research on the prediction of researchers cooperation potential[D]. Taiyuan: Shanxi University, 2019: 20-45. 10.7544/issn1000-1239.2019.20180641 | |
21 | LEE J, LEE I, KANG J. Self-attention graph pooling[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 3734-3743. |
22 | FLORES-SZWAGRZAK K, TREIBICH R. Teamwork and individual productivity[J]. Management Science, 2020, 66(6): 2523-2544. 10.1287/mnsc.2019.3305 |
23 | HAGEN N T. Harmonic allocation of authorship credit: Source-level correction of bibliometric bias assures accurate publication and citation analysis[J]. PLoS ONE, 2008, 3(12): No.e4021. 10.1371/journal.pone.0004021 |
24 | STALLINGS J, VANCE E, YANG J S, et al. Determining scientific impact using a collaboration index[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(24): 9680-9685. 10.1073/pnas.1220184110 |
25 | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. (2017-01-30) [2022-05-22].. |
26 | JIN W, DERR T, WANG Y Q, et al. Node similarity preserving graph convolutional networks[C]// Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York: ACM, 2021: 148-156. 10.1145/3437963.3441735 |
27 | BRODY S, ALON U, YAHAV E. How attentive are graph attention networks?[EB/OL]. (2022-01-31) [2022-05-31].. |
28 | LIU J L, ONG G P, CHEN X Q. GraphSAGE-based traffic speed forecasting for segment network with sparse data[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(3):1755-1766. 10.1109/tits.2020.3026025 |
29 | JIN D, HUO C Y, LIANG C D, et al. Heterogeneous graph neural network via attribute completion[C]// Proceedings of the Web Conference 2021. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee: ACM, 2021: 391-400. 10.1145/3442381.3449914 |
30 | LI Q B, WEN Z Y, HE B S. Practical federated gradient boosting decision trees[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 4642-4649. 10.1609/aaai.v34i04.5895 |
[1] | Zhiyuan XI, Chao TANG, Anyang TONG, Wenjian WANG. Driver behavior recognition based on dual-path spatiotemporal network [J]. Journal of Computer Applications, 2024, 44(5): 1511-1519. |
[2] | Boren HU, Zhongmin PEI, Zhangkai LUO, Jie DING. Temporal network motif discovery method based on null model [J]. Journal of Computer Applications, 2023, 43(8): 2505-2510. |
[3] | Doudou LI, Wanggen LI, Yichun XIA, Yang SHU, Kun GAO. Skeleton-based action recognition based on feature interaction and adaptive fusion [J]. Journal of Computer Applications, 2023, 43(8): 2581-2587. |
[4] | Sirui WANG, Shijuan CHENG, Feimeng YUAN. Reliability evaluation method of high-reliability products based on improved evidence fusion [J]. Journal of Computer Applications, 2023, 43(7): 2140-2146. |
[5] | Yu WANG, Zilin FAN, Tianjun REN, Xiaofei JI. Aerial target identification method based on switching reasoning evidential network under incomplete information [J]. Journal of Computer Applications, 2023, 43(4): 1071-1078. |
[6] | Xingshuo DING, Xiang LI, Qian XIE. Enterprise portrait construction method based on label layering and deepening modeling [J]. Journal of Computer Applications, 2022, 42(4): 1170-1177. |
[7] | Shoulong JIAO, Youxiang DUAN, Qifeng SUN, Zihao ZHUANG, Chenhao SUN. Knowledge representation learning method incorporating entity description information and neighbor node features [J]. Journal of Computer Applications, 2022, 42(4): 1050-1056. |
[8] | Xin LI, Tao JIA. Deep fusion model for predicting differential gene expression by histone modification data [J]. Journal of Computer Applications, 2022, 42(11): 3404-3412. |
[9] | Lu ZHANG, Jiapeng LIU, Dongmei TIAN. Application of Stacking-Bagging-Vote multi-source information fusion model for financial early warning [J]. Journal of Computer Applications, 2022, 42(1): 280-286. |
[10] | CAO Jianfang, TIAN Xiaodong, JIA Yiming, YAN Minmin. Application of improved DeepLabV3+ model in mural segmentation [J]. Journal of Computer Applications, 2021, 41(5): 1471-1476. |
[11] | ZHENG Liping, WANG Jianqiang, ZHANG Yuzhao, DONG Zuofan. Vehicle number optimization approach of autonomous vehicle fleet driven by multi-spatio-temporal distribution task [J]. Journal of Computer Applications, 2021, 41(5): 1406-1411. |
[12] | ZHANG Rong, ZHANG Xianguo. Opinion spam detection based on hierarchical heterogeneous graph attention network [J]. Journal of Computer Applications, 2021, 41(5): 1275-1281. |
[13] | REN Kezhou, PENG Furong, GUO Xin, WANG Zhe, ZHANG Xiaojing. Social recommendation based on dynamic integration of social information [J]. Journal of Computer Applications, 2021, 41(10): 2806-2812. |
[14] | Yang LI, Wei ZHANG, Chen PENG. Target-dependent method for authorship attribution [J]. Journal of Computer Applications, 2020, 40(2): 473-478. |
[15] | LIU Zhengming, MA Hong, LIU Shuxin, LI Haitao, CHANG Sheng. Network representation learning algorithm incorporated with node profile attribute information [J]. Journal of Computer Applications, 2019, 39(4): 1012-1020. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||