Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (11): 3548-3555.DOI: 10.11772/j.issn.1001-9081.2023101505
• Multimedia computing and computer simulation • Previous Articles Next Articles
Fu LIN1, Jiasheng SHI1, Ze GAO2, Zunkang CHU2, Qiongmin MA3, Haiyan YU2, Weixiong RAO1()
Received:
2023-11-03
Revised:
2023-12-08
Accepted:
2023-12-15
Online:
2024-11-13
Published:
2024-11-10
Contact:
Weixiong RAO
About author:
LIN Fu, born in 2000, M. S. candidate. His research interests include graph neural network, AI for FEM.Supported by:
林滏1, 石稼晟1, 高泽2, 楚遵康2, 马琼敏3, 余海燕2, 饶卫雄1()
通讯作者:
饶卫雄
作者简介:
林滏(2000—),男,福建宁德人,硕士研究生,CCF会员,主要研究方向:图神经网络、面向有限元的人工智能基金资助:
CLC Number:
Fu LIN, Jiasheng SHI, Ze GAO, Zunkang CHU, Qiongmin MA, Haiyan YU, Weixiong RAO. Physical system simulation based on deep representation learning for 3D geometric features[J]. Journal of Computer Applications, 2024, 44(11): 3548-3555.
林滏, 石稼晟, 高泽, 楚遵康, 马琼敏, 余海燕, 饶卫雄. 基于3D几何特征深度表达学习的物理系统仿真[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3548-3555.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023101505
结构 | 种类数 | 结构 | 种类数 | 结构 | 种类数 |
---|---|---|---|---|---|
长方体 | 5 | 三棱柱 | 3 | T形柱 | 3 |
工形柱 | 4 | 梯形四棱柱 | 2 | 带孔长方体 | 2 |
Tab. 1 Geometry types
结构 | 种类数 | 结构 | 种类数 | 结构 | 种类数 |
---|---|---|---|---|---|
长方体 | 5 | 三棱柱 | 3 | T形柱 | 3 |
工形柱 | 4 | 梯形四棱柱 | 2 | 带孔长方体 | 2 |
参数 | 值 | 参数 | 值 |
---|---|---|---|
密度/(kg·m-3) | 7 850 | 泊松比 | 0.29 |
杨氏模量/GPa | 205 | 屈服强度/GPa | 355 |
Tab. 2 Material properties of geometries
参数 | 值 | 参数 | 值 |
---|---|---|---|
密度/(kg·m-3) | 7 850 | 泊松比 | 0.29 |
杨氏模量/GPa | 205 | 屈服强度/GPa | 355 |
类型 | 型号 | 其他参数 |
---|---|---|
CPU | Intel Xeon Platinum 8225C | 内存: 47 GB; 内核: 12核 |
GPU | NVIDIA GeForce RTX 3090 | 显存: 24 GB |
Tab. 3 Experimental environmental parameters
类型 | 型号 | 其他参数 |
---|---|---|
CPU | Intel Xeon Platinum 8225C | 内存: 47 GB; 内核: 12核 |
GPU | NVIDIA GeForce RTX 3090 | 显存: 24 GB |
模块 | MLP参数 |
---|---|
空间描述符 | [3, 64, 64] |
载荷描述符 | [3, 64, 64] |
面形状描述符 | [6, 32, 32], [32, 64, 64] |
结构描述符 | [3+64+64, 64, 64] |
特征融合模块 | [in×2, in], [in, out] |
多级特征融合 | [128×L, 128] |
输出层 | [128+128, 128, 64, 1] |
Tab. 4 Setting of parameters for MLPs
模块 | MLP参数 |
---|---|
空间描述符 | [3, 64, 64] |
载荷描述符 | [3, 64, 64] |
面形状描述符 | [6, 32, 32], [32, 64, 64] |
结构描述符 | [3+64+64, 64, 64] |
特征融合模块 | [in×2, in], [in, out] |
多级特征融合 | [128×L, 128] |
输出层 | [128+128, 128, 64, 1] |
数据集 | 方法 | MAE/MPa | MedAE/MPa | 预测时间/s |
---|---|---|---|---|
悬臂梁 | 全连接网络 | 0.657 | 0.553 | 2.07×10-3 |
LSTM[ | 0.224 | 0.188 | 6.82×10-4 | |
PCAFeatureNN[ | 0.485 | 0.460 | 3.25×10-3 | |
MeshGraphNet[ | 0.198 | 0.137 | 4.38×10-3 | |
MeshNet[ | 0.290 | 0.251 | 3.63×10-3 | |
本文方法 | 0.049 | 0.036 | 2.63×10-3 | |
方向盘 | MeshGraphNet[ | 8.09 | 7.50 | 3.72×10-1 |
MeshNet[ | 13.20 | 12.30 | 3.08×10-1 | |
本文方法 | 6.85 | 6.16 | 2.23×10-1 |
Tab. 5 Comparison of test error and test time on different datasets
数据集 | 方法 | MAE/MPa | MedAE/MPa | 预测时间/s |
---|---|---|---|---|
悬臂梁 | 全连接网络 | 0.657 | 0.553 | 2.07×10-3 |
LSTM[ | 0.224 | 0.188 | 6.82×10-4 | |
PCAFeatureNN[ | 0.485 | 0.460 | 3.25×10-3 | |
MeshGraphNet[ | 0.198 | 0.137 | 4.38×10-3 | |
MeshNet[ | 0.290 | 0.251 | 3.63×10-3 | |
本文方法 | 0.049 | 0.036 | 2.63×10-3 | |
方向盘 | MeshGraphNet[ | 8.09 | 7.50 | 3.72×10-1 |
MeshNet[ | 13.20 | 12.30 | 3.08×10-1 | |
本文方法 | 6.85 | 6.16 | 2.23×10-1 |
方法 | MAE | MedAE |
---|---|---|
全连接网络 | 1.207 | 0.953 |
LSTM[ | 0.686 | 0.344 |
PCAFeatureNN[ | 0.666 | 0.497 |
MeshGraphNet[ | 0.349 | 0.249 |
MeshNet[ | 0.342 | 0.271 |
本文方法 | 0.133 | 0.052 |
Tab. 6 Experimental results of generalization
方法 | MAE | MedAE |
---|---|---|
全连接网络 | 1.207 | 0.953 |
LSTM[ | 0.686 | 0.344 |
PCAFeatureNN[ | 0.666 | 0.497 |
MeshGraphNet[ | 0.349 | 0.249 |
MeshNet[ | 0.342 | 0.271 |
本文方法 | 0.133 | 0.052 |
消融模块 | MAE | MedAE |
---|---|---|
无 | 1.207 | 0.953 |
空间描述符 | 0.686 | 0.344 |
载荷描述符 | 0.666 | 0.497 |
面形状描述符 | 0.349 | 0.249 |
面核相关 | 0.342 | 0.271 |
融合与聚合 | 0.133 | 0.052 |
Tab. 7 Ablation experimental results
消融模块 | MAE | MedAE |
---|---|---|
无 | 1.207 | 0.953 |
空间描述符 | 0.686 | 0.344 |
载荷描述符 | 0.666 | 0.497 |
面形状描述符 | 0.349 | 0.249 |
面核相关 | 0.342 | 0.271 |
融合与聚合 | 0.133 | 0.052 |
1 | 周晔欣,戴如玥,黄争鸣.复合材料结构力学分析CAE软件现状[J].应用力学学报,2020,37(1):114-122. |
ZHOU Y X, DAI R Y, HUANG Z M. Current status of CAE software for composite structural analysis[J]. Chinese Journal of Applied Mechanics, 2020, 37(1): 114-122. | |
2 | 唐成顺,孙丹,唐威,等.基于LSTM循环神经网络的汽轮机转子表面应力预测模型[J].中国电机工程学报,2021,41(2):451-460. |
TANG C S, SUN D, TANG W, et al. A turbine rotor surface stress prediction model based on LSTM recurrent neural network[J]. Proceedings of the CSEE, 2021, 41(2): 451-460. | |
3 | 赵翔,茹东恒,王鹏,等.基于NARX神经网络方法的汽轮机转子关键部位应力预测[J].应用数学和力学,2021,42(8):771-784. |
ZHAO X, RU D H, WANG P, et al. On the stress prediction of key components in steam turbine rotors based on the NARX neural network[J]. Applied Mathematics and Mechanics, 2021, 42(8): 771-784. | |
4 | RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. |
5 | ZHANG L, CHENG L, LI H, et al. Hierarchical deep-learning neural networks: finite elements and beyond[J]. Computational Mechanics, 2021, 67(1): 207-230. |
6 | 刘淼,孙成志,王潇嵩.基于深度学习的汽车结构件应力预测方法[C]// 2021中国汽车工程学会年会论文集.北京:机械工业出版社,2021:1534-1537. |
LIU M, SUN C Z, WANG X S. Stress prediction method of automobile structural components based on deep learning[C]// Proceedings of the 2021 China-SAE Congress. Beijing: China Machine Press, 2021: 1534-1537. | |
7 | LIANG L, LIU M, MARTIN C, et al. A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis[J]. Journal of the Royal Society Interface, 2018, 15(138): No.20170844. |
8 | PFAFF T, FORTUNATO M, SANCHEZ-GONZALEZ A, et al. Learning mesh-based simulation with graph networks[EB/OL]. [2023-09-22].. |
9 | SHI J, LIN F, RAO W. Learning to simulate complex physical systems: a case study[C]// Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. New York: ACM, 2023: 4284-4288. |
10 | FENG Y, FENG Y, YOU H, et al. MeshNet: mesh neural network for 3D shape representation[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 8279-8286. |
11 | LIEN S L, KAJIYA J T. A symbolic method for calculating the integral properties of arbitrary nonconvex polyhedra[J]. IEEE Computer Graphics and Applications, 1984, 4(10): 35-42. |
12 | ZHANG C, CHEN T. Efficient feature extraction for 2D/3D objects in mesh representation[C]// Proceedings of the 2001 International Conference on Image Processing — Volume 3. Piscataway: IEEE, 2001: 935-938. |
13 | HUBELI A, GROSS M. Multiresolution feature extraction for unstructured meshes[C]// Proceedings of the 2011 IEEE Conference on Visualization. Piscataway: IEEE, 2011: 287-294. |
14 | KAZHDAN M, FUNKHOUSER T, RUSINKIE-WICZ S. Rotation invariant spherical harmonic representation of 3D shape descriptors[C]// Proceedings of the 2003 Symposium on Geometry Processing. Goslar: Eurographics Association, 2003: 156-164. |
15 | QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 77-85. |
16 | QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 5105-5114. |
17 | SHEN Y, FENG C, YANG Y, et al. Mining point cloud local structures by kernel correlation and graph pooling[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4548-4557. |
18 | 林瑶瑶,郁梅,何周燕,等.三维网格客观质量评价[J].激光与光电子学进展,2021,58(2):No.0200003. |
LIN Y Y, YU M, HE Z Y, et al. Objective quality assessment for three-dimensional meshes[J]. Laser and Optoelectronics Progress, 2021, 58(2): No.0200003. | |
19 | HUGHES J F, VAN DAM A, McGUIRE M, et al. Computer Graphics Principles and Practice[M]. 3rd ed. Boston: Addison-Wesley Professional, 2013: 635-668. |
20 | 曾攀.有限元分析及应用[M].北京:清华大学出版社,2004: 362-369. |
ZENG P. Finite Element Analysis and Applications[M]. Beijing: Tsinghua University Press, 2004: 362-369. | |
21 | FANG Y, XIE J, DAI G, et al. 3D deep shape descriptor[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 2319-2328. |
22 | LEYS C, LEY C, KLEIN O, et al. Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median[J]. Journal of Experimental Social Psychology, 2013, 49(4): 764-766. |
[1] | Jieru JIA, Jianchao YANG, Shuorui ZHANG, Tao YAN, Bin CHEN. Unsupervised person re-identification based on self-distilled vision Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2893-2902. |
[2] | Zongze JIA, Pengfei GAO, Yinglong MA, Xiaofeng LIU, Haixin XIA. Multi-feature fusion attention-based hierarchical classification method for dialogue act [J]. Journal of Computer Applications, 2024, 44(3): 715-721. |
[3] | Yongfeng DONG, Yahan DENG, Yao DONG, Yacong WANG. Survey of clustering based on deep learning [J]. Journal of Computer Applications, 2022, 42(4): 1021-1028. |
[4] | CHEN Li, WANG Hongyuan, ZHANG Yunpeng, CAO Liang, YIN Yuchang. Video-based person re-identification method by jointing evenly sampling-random erasing and global temporal feature pooling [J]. Journal of Computer Applications, 2021, 41(1): 164-169. |
[5] | DING Jianli, LI Yang, WANG Jialiang. Short text automatic summarization method based on dual encoder [J]. Journal of Computer Applications, 2019, 39(12): 3476-3481. |
[6] | CHANG Bingguo, ZANG Hongying. Time series classifier design based on piecewise dimensionality reduction and updated dynamic time warping [J]. Journal of Computer Applications, 2018, 38(7): 1910-1915. |
[7] | YANG Xiaoling, LI Zhiqing, LIU Yutong. Automatic image annotation based on multi-label discriminative dictionary learning [J]. Journal of Computer Applications, 2018, 38(5): 1294-1298. |
[8] | ZHANG Luosheng, TONG Jing. Real-time interaction based modeling method for 3D objects with relief-texture [J]. Journal of Computer Applications, 2017, 37(8): 2302-2306. |
[9] | LI Yandong, HAO Zongbo, LEI Hang. Survey of convolutional neural network [J]. Journal of Computer Applications, 2016, 36(9): 2508-2515. |
[10] | LOU Ziting, ZHANG Yaping. Mesh layout algorithm based on greedy optimization strategy [J]. Journal of Computer Applications, 2016, 36(7): 1954-1958. |
[11] | YANG Xingyao YU Jiong TURGUN Ibrahim LIAO Bin. Collaborative filtering model combining users' and items' predictions [J]. Journal of Computer Applications, 2013, 33(12): 3354-3358. |
[12] | LIU Tong-tong DAI Min LI Zhong-yi. ECG waveform similarity analysis based on window-slope representation [J]. Journal of Computer Applications, 2012, 32(10): 2969-2972. |
[13] | XIANG Jun DA Bang-you LIANG Juan HOU Jian-hua. New feature description based on feature relationships for gait recognition [J]. Journal of Computer Applications, 2012, 32(03): 885-888. |
[14] | . A fast topological reconstruction algorithm for 3D mesh model [J]. Journal of Computer Applications, 2010, 30(11): 3002-3004. |
[15] | Hua SONG Jiang LIU. Algorithm to generate progressive meshes based on quadric error metric [J]. Journal of Computer Applications, 2008, 28(12): 3160-3162. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||