[1] ZHU X, ZHAO S, YANG Y, et al. A real-time ensemble classification algorithm for time series data[C]//ICA 2017:Proceeding of the 2017 IEEE International Conference on Agents. Piscataway, NJ:IEEE, 2017:145-150. [2] 陈明威,孙丽华,徐健锋.弹性粗粒度动态弯曲时序相似性算法[J].计算机应用,2016,36(6):1639-1644.(CHEN M W, SUN L H, XU J F. Temporal similarity algorithm of coarse-granularity based dynamic time warping[J]. Journal of Computer Applications, 2016, 36(6):1639-1644.) [3] MEI J Y, LIU M Z, WANG Y F, et.al. Learning a Mahalanobis distance-based dynamic time warping measure for multivariate time series classification[J]. IEEE Transactions on Cybernetics, 2016, 46(6):1363-1374. [4] SHARABIANI A, DARABⅡ H, REZAEI A, et al. Efficient classification of long time series by 3-D dynamic time warping[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 47(10):2688-2703. [5] SUN T, LIU H, YU H, et al. Degree-pruning dynamic programming approaches to central time series minimizing dynamic time warping distance[J]. IEEE Transactions on Cybernetics, 2017, 47(7):1719-1729. [6] 李正欣,张凤鸣,李克武,等.一种支持DTW距离的多元时间序列索引结构[J].软件学报,2014,25(3):560-575.(LI Z X, ZHANG F M, LI K W, et al. Index structure for multivariate time series under DTW distance metric[J]. Journey of Software, 2014, 25(3):560-575.) [7] KEOGH E, RATANAMAHATANA C A. Exact indexing of dynamic time warping[J]. Knowledge and Information Systems, 2005, 7:358-386. [8] 李海林,梁叶.分段聚合近似和数值导数的动态时间弯曲方法[J].智能系统学报,2016,11(2):249-256.(LI H L, LIANG Y. Dynamic time warping based on piecewise aggregate approximation and data derivatives[J]. CAAI Transactions on Intelligent Systems, 2016, 11(2):249-256.) [9] 李海林,梁叶,王少春.时间序列数据挖掘中的动态时间弯曲研究综述[J/OL].控制与决策,2018[2017-12-02]. http://kns.cnki.net/KCMS/detail/21.1124.TP.20171101.1126.012.html.(LI H L, LIANG Y, WANG S C. A review on dynamic time warping in time series data mining[J/OL]. Control and Decision, 2018[2017-12-02]. http://kns.cnki.net/KCMS/detail/21.1124.TP.20171101.1126.012.html. [10] HAZEM E, AHMED K E, EMMANUEL C, et al. Online piece-wise linear approximation of numerical streams with precision guarantees[C]//Proceeding of the 35th International Conference on Very Large Data Bases. Berlin:Springer, 2009:145-156. [11] 田征,杜慧敏,黄小康.改进的超越函数分段线性逼近方法[J].计算机应用,2016,36(7):1807-1810.(TIAN Z, DU H M, HUANG X K. Improved method of transcendental function piecewise linear approximation[J]. Journal of Computer Applications, 2016, 36(7):1807-1810.) [12] LIU J Y, ZHANG C L, ZHANG S W, et.al. An efficient and accurate optimization method of sliding window size for PAA[C]//Proceeding of the 2014 IEEE Computers, Communications and IT Applications Conference. Piscataway, NJ:IEEE, 2014:283-286. [13] UNAGAMI Y, MATSUZAKI N, YAMADA S, et.al. Private similarity searchable encryption for Euclidean distance[C]//ISITA 2016:Proceeding of the 2016 International Symposium on Information Theory and Its Applications. Piscataway, NJ:IEEE, 2016:718-722. [14] CHEN Y, KEOGH E, HU B, et al. The UCR time series classification archive[EB/OL].[2017-07-01]. http://www.cs.ucr.edu/~eamonn/time_series_data/. [15] 曹洋洋,林意,王智博,等.基于形态距离及自适应权重的相似性度量[J/OL].计算机应用研究,2018,35(9)[2017-11-05]. http://www.arocmag.com/article/02-2018-09-010.html.(CAO Y Y, LIN Y, WANG Z B, et al. Similarity measure based on morphological distance and adaptive weights[J/OL]. Application Research of Computers, 2018, 35(9)[2017-11-05]. http://www.arocmag.com/article/02-2018-09-010.html.) |