Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (8): 2506-2513.DOI: 10.11772/j.issn.1001-9081.2023081208
• Network and communications • Previous Articles Next Articles
Le YANG, Damin ZHANG(), Qing HE, Jiaxin DENG, Fengqin ZUO
Received:
2023-09-06
Revised:
2023-10-19
Accepted:
2023-11-03
Online:
2024-08-22
Published:
2024-08-10
Contact:
Damin ZHANG
About author:
YANG Le, born in 2001, M. S. candidate. His research interests include wireless sensor network, swarm intelligence algorithm, machine learning.Supported by:
通讯作者:
张达敏
作者简介:
杨乐(2001—),男,陕西咸阳人,硕士研究生,主要研究方向:无线传感器网络、群智能算法、机器学习基金资助:
CLC Number:
Le YANG, Damin ZHANG, Qing HE, Jiaxin DENG, Fengqin ZUO. Application of improved hunter-prey optimization algorithm in WSN coverage[J]. Journal of Computer Applications, 2024, 44(8): 2506-2513.
杨乐, 张达敏, 何庆, 邓佳欣, 左锋琴. 改进猎人猎物优化算法在WSN覆盖中的应用[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2506-2513.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023081208
算法 | 网络覆盖率/% | |||
---|---|---|---|---|
最优值 | 最差值 | 平均值 | 标准差 | |
IHPO | 96.78 | 92.94 | 94.81 | 0.008 3 |
HPO | 81.86 | 74.60 | 79.59 | 0.018 8 |
PSO | 85.44 | 81.41 | 82.56 | 0.018 0 |
IPSO | 93.46 | 85.15 | 90.35 | 0.016 9 |
GWO | 93.20 | 75.28 | 90.02 | 0.038 8 |
IGWO | 95.39 | 90.83 | 92.69 | 0.020 5 |
Tab. 1 Coverage rates of different algorithms in scenario one
算法 | 网络覆盖率/% | |||
---|---|---|---|---|
最优值 | 最差值 | 平均值 | 标准差 | |
IHPO | 96.78 | 92.94 | 94.81 | 0.008 3 |
HPO | 81.86 | 74.60 | 79.59 | 0.018 8 |
PSO | 85.44 | 81.41 | 82.56 | 0.018 0 |
IPSO | 93.46 | 85.15 | 90.35 | 0.016 9 |
GWO | 93.20 | 75.28 | 90.02 | 0.038 8 |
IGWO | 95.39 | 90.83 | 92.69 | 0.020 5 |
算法 | 网络覆盖率/% | |||
---|---|---|---|---|
最优值 | 最差值 | 平均值 | 标准差 | |
IHPO | 93.98 | 91.22 | 92.56 | 0.018 5 |
HPO | 75.36 | 71.52 | 73.61 | 0.007 9 |
PSO | 72.03 | 69.38 | 71.19 | 0.008 2 |
IPSO | 90.58 | 73.56 | 81.21 | 0.032 2 |
GWO | 72.23 | 69.38 | 70.38 | 0.007 4 |
IGWO | 89.14 | 72.68 | 79.52 | 0.042 0 |
Tab. 2 Coverage rates of different algorithms in scenario two
算法 | 网络覆盖率/% | |||
---|---|---|---|---|
最优值 | 最差值 | 平均值 | 标准差 | |
IHPO | 93.98 | 91.22 | 92.56 | 0.018 5 |
HPO | 75.36 | 71.52 | 73.61 | 0.007 9 |
PSO | 72.03 | 69.38 | 71.19 | 0.008 2 |
IPSO | 90.58 | 73.56 | 81.21 | 0.032 2 |
GWO | 72.23 | 69.38 | 70.38 | 0.007 4 |
IGWO | 89.14 | 72.68 | 79.52 | 0.042 0 |
参数名称 | 值 |
---|---|
基站坐标/(m,m) | (50,50) |
节点初始能量/J | 1 |
自由空间能耗系/(pJ·bit·m-2) | 10 |
多路衰减能耗系数/(pJ·bit·m-4) | 0.001 3 |
处理单位数据能耗/(nJ·bit-1) | 50 |
数据包大小/bit | 4 000 |
控制信息大小/bit | 200 |
簇头概率 | 0.1 |
最大运行轮次 | 2 500 |
Tab. 3 Parameters of LEACH protocol
参数名称 | 值 |
---|---|
基站坐标/(m,m) | (50,50) |
节点初始能量/J | 1 |
自由空间能耗系/(pJ·bit·m-2) | 10 |
多路衰减能耗系数/(pJ·bit·m-4) | 0.001 3 |
处理单位数据能耗/(nJ·bit-1) | 50 |
数据包大小/bit | 4 000 |
控制信息大小/bit | 200 |
簇头概率 | 0.1 |
最大运行轮次 | 2 500 |
1 | SRINIVAS M N, MADHUSUDANAN V, MURTY A V S N, et al. A review article on wireless sensor networks in view of e-epidemic models[J]. Wireless Personal Communications, 2021, 120(1): 95-111. |
2 | LIU R, MO Y. Performance of a novel enhanced sparrow search algorithm for engineering design process: coverage optimization in wireless sensor network[J]. Processes, 2022, 10(9): No.1691. |
3 | HE Q, LAN Z, ZHANG D, et al. Improved marine predator algorithm for wireless sensor network coverage optimization problem[J]. Sustainability, 2022, 14(16): No.9944. |
4 | WANG J, JU C, GAO Y, et al. A PSO based energy efficient coverage control algorithm for wireless sensor networks[J]. Computers, Materials and Continua, 2018, 56(3):433-446. |
5 | TUBA E, TUBA M, BEKO M. Mobile wireless sensor networks coverage maximization by firefly algorithm[C]// Proceedings of the 27th International Conference on Radioelektronika. Piscataway: IEEE, 2017:1-5. |
6 | MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69:46-61. |
7 | 罗鑫. 基于改进粒子群算法的红外WSN覆盖研究[J]. 激光与红外, 2023, 53(2):289-295. |
LUO X. Research on infrared WSN coverage based on improved particle swarm algorithm[J]. Laser and Infrared, 2023, 53(2):289-295. | |
8 | MIAO Z, YUAN X, ZHOU F, et al. Grey wolf optimizer with an enhanced hierarchy and its application to the wireless sensor network coverage optimization problem[J]. Applied Soft Computing, 2020, 96: No.10662. |
9 | ZHU F, WANG W. A coverage optimization method for WSNs based on the improved weed algorithm[J]. Sensors, 2021, 21(17): No.5869. |
10 | 范星泽,禹梅. 改进灰狼算法的无线传感器网络覆盖优化[J]. 计算机科学, 2022, 49(6A):628-631. |
FAN X Z, YU M. Coverage optimization of WSN based on improved grey wolf optimizer[J]. Computer Science, 2022, 49(6A):628-631. | |
11 | NARUEI I, KEYNIA F, SABBAGH MOLAHOSSEINI A. Hunter-prey optimization: algorithm and applications[J]. Soft Computing, 2022, 26(3):1279-1314. |
12 | 高雨虹,曲昭伟,宋现敏. 基于猎人猎物优化与双向长短时记忆组合模型的汽车出车率预测[J]. 交通运输系统工程与信息, 2023, 23(1):198-206, 264. |
GAO Y H, QU Z W, SONG X M. Car operation rate prediction based on combination model of hunter-prey optimizer algorithm and bi-directional long short-term memory neural network[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(1):198-206, 264. | |
13 | 鲁英达,张菁. 基于改进猎人猎物算法的VMD-KELM短期负荷预测[J]. 电气工程学报, 2023, 18(4):228-238. |
LU Y D, ZHANG J. VMD-KEM short-term load prediction based on improved hunter prey optimizer[J]. Journal of Electrical Engineering, 2023, 18(4):228-238. | |
14 | STORN R, PRICE K. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11:341-359. |
15 | LIANG J, TIAN M, LIU Y, et al. Coverage optimization of soil moisture wireless sensor networks based on adaptive Cauchy variant butterfly optimization algorithm[J]. Scientific Reports, 2022, 12(4): No.11867. |
16 | LIU X, TIAN M, ZHOU J, et al. An efficient coverage method for SEMWSNs based on adaptive chaotic Gaussian variant snake optimization algorithm[J]. Mathematical Biosciences and Engineering, 2023, 20(2):3191-3215. |
17 | 许杰,汤显峰. 融合莱维飞行与混合变异的蝠鲼觅食优化传感器节点覆盖策略[J]. 传感技术学报, 2023, 36(4):635-645. |
XU J, TANG X F. Sensor nodes coverage strategy based on improved manta ray foraging optimization with Levy flight and hybrid mutation[J]. Chinese Journal of Sensors and Actuators, 2023, 36(4):635-645. | |
18 | 宋婷婷,张达敏,王依柔,等. 基于改进鲸鱼优化算法的WSN覆盖优化[J]. 传感技术学报, 2020, 33(3):415-422. |
SONG T T, ZHANG D M, WANG Y R, et al. WSN coverage optimization based on improved whale optimization algorithm[J]. Chinese Journal of Sensors and Actuators, 2020, 33(3):415-422. | |
19 | CHEN W, YANG P, ZHAO W, et al. Improved ant lion optimizer for coverage optimization in wireless sensor networks[J]. Wireless Communications and Mobile Computing, 2022, 2022: No.8808575. |
20 | 吴亮,赵晴峰,汤显峰. 基于动态分级蝴蝶优化算法的WSN节点覆盖优化[J]. 传感技术学报, 2022, 35(5):650-659. |
WU L, ZHAO Q F, TANG X F. Nodes coverage optimization of wireless sensor network based on dynamic leveling butterfly optimization algorithm[J]. Chinese Journal of Sensors and Actuators, 2022, 35(5):650-659. |
[1] | Qiangkui LENG, Xuezi SUN, Xiangfu MENG. Oversampling method for imbalanced data based on sample potential and noise evolution [J]. Journal of Computer Applications, 2024, 44(8): 2466-2475. |
[2] | Fengfeng WEI, Weineng CHEN. Distributed data-driven evolutionary computation for multi-constrained optimization [J]. Journal of Computer Applications, 2024, 44(5): 1393-1400. |
[3] | Yawei HUANG, Xuezhong QIAN, Wei SONG. Improved differential evolution algorithm based on dual-archive population size adaptive method [J]. Journal of Computer Applications, 2024, 44(12): 3844-3853. |
[4] | Bo WANG, Hao WANG, Xiaoxin DU, Xiaodong ZHENG, Wei ZHOU. Hybrid dragonfly algorithm based on subpopulation and differential evolution [J]. Journal of Computer Applications, 2023, 43(9): 2868-2876. |
[5] | Jian LIN, Jingxuan YE, Wenwen LIU, Xiaowen SHAO. Multimodal differential evolution algorithm for solving capacitated vehicle routing problem [J]. Journal of Computer Applications, 2023, 43(7): 2248-2254. |
[6] | Qianshun GAO, Chunlong FAN, Yanda LI, Yiping TENG. Universal perturbation generation method of neural network based on differential evolution [J]. Journal of Computer Applications, 2023, 43(11): 3436-3442. |
[7] | Qingqing NIE, Dingsheng WAN, Yuelong ZHU, Zhijia LI, Cheng YAO. Hydrological model based on temporal convolutional network [J]. Journal of Computer Applications, 2022, 42(6): 1756-1761. |
[8] | Xiaoping XU, Yangli TANG, Feng WANG. Artificial cooperative search algorithm for solving traveling salesman problems [J]. Journal of Computer Applications, 2022, 42(6): 1837-1843. |
[9] | Rongrong DAI, Honghui LI, Xueliang FU. Data center flow scheduling mechanism based on differential evolution and ant colony optimization algorithm [J]. Journal of Computer Applications, 2022, 42(12): 3863-3869. |
[10] | ZHANG Xiangfei, LU Yuming, ZHANG Pingsheng. Constrained multi-objective optimization algorithm based on coevolution [J]. Journal of Computer Applications, 2021, 41(7): 2012-2018. |
[11] | CAI Ruiguang, ZHANG Desheng, XIAO Yanting. Parameter independent weighted local mean-based pseudo nearest neighbor classification algorithm [J]. Journal of Computer Applications, 2021, 41(6): 1694-1700. |
[12] | JIA Heming, JIANG Zichao, LI Yao, SUN Kangjian. Simultaneous feature selection optimization based on improved spotted hyena optimizer algorithm [J]. Journal of Computer Applications, 2021, 41(5): 1290-1298. |
[13] | Zhisheng SHAO, Guofu ZHANG, Zhaopin SU, Lei LI. Dynamic testing resource allocation algorithm based on software architecture and generalized differential evolution [J]. Journal of Computer Applications, 2021, 41(12): 3692-3701. |
[14] | XUE Feng, SHI Xuhua, SHI Feifan. Surrogate-based differential evolution constrained optimization [J]. Journal of Computer Applications, 2020, 40(4): 1091-1096. |
[15] | ZHAO Zhixue, LI Xiamiao, ZHOU Xiancheng. Green vehicle routing problem optimization for multi-type vehicles considering traffic congestion areas [J]. Journal of Computer Applications, 2020, 40(3): 883-890. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||