Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (1): 82-89.DOI: 10.11772/j.issn.1001-9081.2024010085
• Artificial intelligence • Previous Articles Next Articles
Xin LIU1(), Dawei YANG1, Changheng SHAO2, Haiwen WANG1, Mingjiang PANG1, Yanru LI1
Received:
2024-01-25
Revised:
2024-03-25
Accepted:
2024-03-27
Online:
2024-05-09
Published:
2025-01-10
Contact:
Xin LIU
About author:
YANG Dawei, born in 1997, M. S. candidate. His research interests include natural language processing, deep learning.Supported by:
刘昕1(), 杨大伟1, 邵长恒2, 王海文1, 庞铭江1, 李艳茹1
通讯作者:
刘昕
作者简介:
杨大伟(1997—),男,江苏扬州人,硕士研究生,主要研究方向:自然语言处理、深度学习;基金资助:
CLC Number:
Xin LIU, Dawei YANG, Changheng SHAO, Haiwen WANG, Mingjiang PANG, Yanru LI. Hierarchical multi-label classification model for public complaints with long-tailed distribution[J]. Journal of Computer Applications, 2025, 45(1): 82-89.
刘昕, 杨大伟, 邵长恒, 王海文, 庞铭江, 李艳茹. 面向长尾分布的民众诉求层次多标签分类模型[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 82-89.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024010085
数据集 | 标签数 | 深度 | 平均标签 深度 | 样本数 | ||
---|---|---|---|---|---|---|
训练集 | 验证集 | 测试集 | ||||
Hotline | 1 568 | 5 | 3.82 | 528 595 | 176 198 | 176 198 |
RCV1-v2[ | 103 | 4 | 3.24 | 20 833 | 2 316 | 781 265 |
WOS[ | 141 | 2 | 2.00 | 30 070 | 7 518 | 9 397 |
Tab. 1 Statistics of datasets
数据集 | 标签数 | 深度 | 平均标签 深度 | 样本数 | ||
---|---|---|---|---|---|---|
训练集 | 验证集 | 测试集 | ||||
Hotline | 1 568 | 5 | 3.82 | 528 595 | 176 198 | 176 198 |
RCV1-v2[ | 103 | 4 | 3.24 | 20 833 | 2 316 | 781 265 |
WOS[ | 141 | 2 | 2.00 | 30 070 | 7 518 | 9 397 |
模型 | Hotline | RCV1-v2[ | WOS[ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Micro-F1 | C-Micro-F1 | Macro-F1 | C-Macro-F1 | Micro-F1 | C-Micro-F1 | Macro-F1 | C-Macro-F1 | Micro-F1 | C-Micro-F1 | Macro-F1 | C-Macro-F1 | |
TextRCNN[ | 73.81 | 72.98 | 58.72 | 58.04 | 81.57 | — | 59.25 | — | 83.55 | — | 76.99 | — |
HiAGM[ | 76.62 | 75.23 | 61.13 | 60.56 | 83.96 | 83.05 | 63.35 | 59.64 | 85.82 | 85.35 | 80.28 | 79.84 |
HTCinfoMax[ | 76.54 | 75.16 | 60.89 | 59.94 | 83.51 | — | 62.71 | — | 85.58 | — | 80.05 | — |
HiMatch[ | 77.16 | 75.92 | 61.28 | 60.33 | 84.73 | 83.49 | 64.11 | 60.64 | 86.20 | 85.61 | 80.53 | 79.32 |
BERT[ | 77.23 | 76.09 | 61.34 | 60.45 | 85.65 | — | 67.02 | — | 85.63 | — | 79.07 | — |
HiAGM-BERT[ | 77.79 | 77.03 | 62.98 | 62.15 | 85.58 | — | 67.93 | — | 86.04 | — | 80.19 | — |
HiMatch-BERT[ | 78.05 | 76.79 | 63.14 | 62.39 | 86.33 | 85.25 | 68.66 | 67.15 | 86.70 | 85.74 | 81.06 | 79.86 |
HMCHotline | 78.81 | 78.81 | 63.76 | 63.76 | 86.79 | 86.79 | 69.54 | 69.54 | 86.63 | 86.63 | 80.87 | 80.87 |
Tab. 2 Experimental results of HMCHotline and other models on three datasets
模型 | Hotline | RCV1-v2[ | WOS[ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Micro-F1 | C-Micro-F1 | Macro-F1 | C-Macro-F1 | Micro-F1 | C-Micro-F1 | Macro-F1 | C-Macro-F1 | Micro-F1 | C-Micro-F1 | Macro-F1 | C-Macro-F1 | |
TextRCNN[ | 73.81 | 72.98 | 58.72 | 58.04 | 81.57 | — | 59.25 | — | 83.55 | — | 76.99 | — |
HiAGM[ | 76.62 | 75.23 | 61.13 | 60.56 | 83.96 | 83.05 | 63.35 | 59.64 | 85.82 | 85.35 | 80.28 | 79.84 |
HTCinfoMax[ | 76.54 | 75.16 | 60.89 | 59.94 | 83.51 | — | 62.71 | — | 85.58 | — | 80.05 | — |
HiMatch[ | 77.16 | 75.92 | 61.28 | 60.33 | 84.73 | 83.49 | 64.11 | 60.64 | 86.20 | 85.61 | 80.53 | 79.32 |
BERT[ | 77.23 | 76.09 | 61.34 | 60.45 | 85.65 | — | 67.02 | — | 85.63 | — | 79.07 | — |
HiAGM-BERT[ | 77.79 | 77.03 | 62.98 | 62.15 | 85.58 | — | 67.93 | — | 86.04 | — | 80.19 | — |
HiMatch-BERT[ | 78.05 | 76.79 | 63.14 | 62.39 | 86.33 | 85.25 | 68.66 | 67.15 | 86.70 | 85.74 | 81.06 | 79.86 |
HMCHotline | 78.81 | 78.81 | 63.76 | 63.76 | 86.79 | 86.79 | 69.54 | 69.54 | 86.63 | 86.63 | 80.87 | 80.87 |
模型 | 整体 | 头部 | 中部 | 尾部 | |||||
---|---|---|---|---|---|---|---|---|---|
Macro-F1 | Macro-P | Macro-R | Macro-P | Macro-R | Macro-P | Macro-R | Macro-P | Macro-R | |
TextRCNN[ | 73.81 | 70.58 | 77.13 | 75.12 | 80.57 | 72.85 | 78.22 | 43.51 | 61.35 |
HiAGM[ | 76.62 | 72.33 | 79.48 | 79.65 | 82.53 | 74.46 | 80.53 | 44.82 | 63.40 |
HTCinfoMax[ | 76.54 | 72.09 | 79.56 | 80.93 | 82.52 | 74.61 | 80.95 | 42.77 | 62.34 |
HiMatch[ | 77.16 | 73.98 | 80.18 | 81.41 | 83.43 | 74.80 | 80.87 | 43.02 | 65.57 |
BERT[ | 77.23 | 73.79 | 81.21 | 81.57 | 83.75 | 74.98 | 80.96 | 44.35 | 66.21 |
HiAGM-BERT[ | 77.79 | 74.16 | 81.67 | 81.65 | 83.58 | 75.14 | 81.13 | 44.20 | 65.27 |
HiMatch-BERT[ | 78.05 | 74.79 | 82.03 | 82.09 | 84.78 | 76.22 | 81.17 | 45.98 | 67.08 |
HMCHotline | 78.81 | 75.02 | 82.42 | 81.86 | 84.55 | 78.16 | 82.41 | 51.58 | 70.14 |
Tab. 3 Experimental results of HMCHotline and other models on labels of head, middle and tail categories of Hotline dataset
模型 | 整体 | 头部 | 中部 | 尾部 | |||||
---|---|---|---|---|---|---|---|---|---|
Macro-F1 | Macro-P | Macro-R | Macro-P | Macro-R | Macro-P | Macro-R | Macro-P | Macro-R | |
TextRCNN[ | 73.81 | 70.58 | 77.13 | 75.12 | 80.57 | 72.85 | 78.22 | 43.51 | 61.35 |
HiAGM[ | 76.62 | 72.33 | 79.48 | 79.65 | 82.53 | 74.46 | 80.53 | 44.82 | 63.40 |
HTCinfoMax[ | 76.54 | 72.09 | 79.56 | 80.93 | 82.52 | 74.61 | 80.95 | 42.77 | 62.34 |
HiMatch[ | 77.16 | 73.98 | 80.18 | 81.41 | 83.43 | 74.80 | 80.87 | 43.02 | 65.57 |
BERT[ | 77.23 | 73.79 | 81.21 | 81.57 | 83.75 | 74.98 | 80.96 | 44.35 | 66.21 |
HiAGM-BERT[ | 77.79 | 74.16 | 81.67 | 81.65 | 83.58 | 75.14 | 81.13 | 44.20 | 65.27 |
HiMatch-BERT[ | 78.05 | 74.79 | 82.03 | 82.09 | 84.78 | 76.22 | 81.17 | 45.98 | 67.08 |
HMCHotline | 78.81 | 75.02 | 82.42 | 81.86 | 84.55 | 78.16 | 82.41 | 51.58 | 70.14 |
模型 | Micro-F1 | Macro-F1 |
---|---|---|
BERT | 77.23 | 61.34 |
BERT-Keyword | 77.91 | 61.89 |
BERT-Date | 77.30 | 61.39 |
BERT-Location | 77.25 | 61.36 |
BERT-TEPK | 77.94 | 61.93 |
Tab. 4 Ablation experimental results of TEPK module on Hotline dataset
模型 | Micro-F1 | Macro-F1 |
---|---|---|
BERT | 77.23 | 61.34 |
BERT-Keyword | 77.91 | 61.89 |
BERT-Date | 77.30 | 61.39 |
BERT-Location | 77.25 | 61.36 |
BERT-TEPK | 77.94 | 61.93 |
模型 | Micro-F1 | Macro-F1 |
---|---|---|
BERT-TEPK | 77.94 | 61.93 |
BERT-TEPK-HSI | 78.19 | 62.14 |
BERT-TEPK-SI | 78.31 | 62.27 |
BERT-TEPK-LEHSA | 78.38 | 62.32 |
Tab. 5 Ablation experimental results of LEHSA module on Hotline dataset
模型 | Micro-F1 | Macro-F1 |
---|---|---|
BERT-TEPK | 77.94 | 61.93 |
BERT-TEPK-HSI | 78.19 | 62.14 |
BERT-TEPK-SI | 78.31 | 62.27 |
BERT-TEPK-LEHSA | 78.38 | 62.32 |
模型 | RCV1-v2[ | WOS[ | Hotline |
---|---|---|---|
HiAGM[ | 0.91 | 0.47 | 1.39 |
HiMatch[ | 1.24 | 0.59 | 1.24 |
HiMatch-BERT[ | 1.08 | 0.96 | 1.26 |
HMCHotline | 0.00 | 0.00 | 0.00 |
Tab. 6 Comparison of label inconsistency rate of HMCHotline and other models
模型 | RCV1-v2[ | WOS[ | Hotline |
---|---|---|---|
HiAGM[ | 0.91 | 0.47 | 1.39 |
HiMatch[ | 1.24 | 0.59 | 1.24 |
HiMatch-BERT[ | 1.08 | 0.96 | 1.26 |
HMCHotline | 0.00 | 0.00 | 0.00 |
1 | 雷斌,蓝羽石,黎茂林,等.智慧社会体系化建设总体构想与发展建议[J].中国工程科学, 2023, 25(3): 219-229. |
LEI B, LAN Y S, LI M L, et al. Overall conception and development suggestions for the systematic construction of smart society [J]. Strategic Study of CAE, 2023, 25(3): 219-229. | |
2 | 贾经冬,张敏南,赵祥,等.接诉即办智能派单业务调度算法研究[J].计算机科学, 2023, 50(11A): No.230300029. |
JIA J D, ZHANG M N, ZHAO X, et al. Study on scheduling algorithm of intelligent order dispatching [J]. Computer Science, 2023, 50(11A): No.230300029. | |
3 | 陈锋. “下交群评”:迈向人民主体性的基层治理——以北京市平谷区接诉即办改革为例[J].北京工业大学学报(社会科学版), 2024, 24(3): 29-39. |
CHEN F. “Downward transfer and mass evaluation”: towards grass-roots governance of people's subjectivity — take the work of in the reform of immediate handling of complaints in Pinggu district of Beijing as an example [J]. Journal of Beijing University of Technology (Social Sciences Edition), 2024, 24(3): 29-39. | |
4 | 肖琳,陈博理,黄鑫,等.基于标签语义注意力的多标签文本分类[J].软件学报, 2020, 31(4): 1079-1089. |
XIAO L, CHEN B L, HUANG X, et al. Multi-label text classification method based on label semantic information [J]. Journal of Software, 2020, 31(4): 1079-1089. | |
5 | 黄伟,刘贵全. MSML-BERT模型的层级多标签文本分类方法研究[J].计算机工程与应用, 2022, 58(15): 191-201. |
HUANG W, LIU G Q. Study on hierarchical multi-label text classification method of MSML-BERT model [J]. Computer Engineering and Applications, 2022, 58(15): 191-201. | |
6 | MAO Y, TIAN J, HAN J, et al. Hierarchical text classification with reinforced label assignment [C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 445-455. |
7 | 吕学强,彭郴,张乐,等.融合BERT与标签语义注意力的文本多标签分类方法[J].计算机应用, 2022, 42(1): 57-63. |
LYU X Q, PENG C, ZHANG L, et al. Text multi-label classification method incorporating BERT and label semantic attention [J]. Journal of Computer Applications, 2022, 42(1): 57-63. | |
8 | JOHNSON R, ZHANG T. Effective use of word order for text categorization with convolutional neural networks [C]// Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2015: 103-112. |
9 | WANG Z, WANG P, HUANG L, et al. Incorporating hierarchy into text encoder: a contrastive learning approach for hierarchical text classification [C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2022: 7109-7119. |
10 | ROJAS K R, BUSTAMANTE G, ONCEVAY A, et al. Efficient strategies for hierarchical text classification: external knowledge and auxiliary tasks [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 2252-2257. |
11 | WEHRMANN J, CERRI R, BARROS R. Hierarchical multi-label classification networks [C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 5075-5084. |
12 | SHIMURA K, LI J, FUKUMOTO F. HFT-CNN: learning hierarchical category structure for multi-label short text categorization [C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 811-816. |
13 | ZHOU J, MA C, LONG D, et al. Hierarchy-aware global model for hierarchical text classification [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 1106-1117. |
14 | CHEN H, MA Q, LIN Z, et al. Hierarchy-aware label semantics matching network for hierarchical text classification [C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 4370-4379. |
15 | DENG Z, PENG H, HE D, et al. HTCInfoMax: a global model for hierarchical text classification via information maximization [C]// Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2021: 3259-3265. |
16 | JIANG T, WANG D, SUN L, et al. Exploiting global and local hierarchies for hierarchical text classification [C]// Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2022: 4030-4039. |
17 | YU C, SHEN Y, MAO Y. Constrained sequence-to-tree generation for hierarchical text classification [C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1865-1869. |
18 | ZHAO W, ZHAO H. Hierarchical long-tailed classification based on multi-granularity knowledge transfer driven by multi-scale feature fusion [J]. Pattern Recognition, 2024, 145: No.109842. |
19 | ZHAO J, LI J, FUKUMOTO F. Hierarchy-aware bilateral-branch network for imbalanced hierarchical text classification [C]// Proceedings of the 2023 International Conference on Database and Expert Systems Applications, LNCS 14147. Cham: Springer, 2023: 143-157. |
20 | ZHAO X, LI Z, ZHANG X, et al. An interactive fusion model for hierarchical multi-label text classification [C]// Proceedings of the 11th CCF International Conference on Natural Language Processing and Chinese Computing, LNCS 13552. Cham: Springer, 2022: 168-178. |
21 | WANG B, HU X, LI P, et al. Cognitive structure learning model for hierarchical multi-label text classification [J]. Knowledge-Based Systems, 2021, 218: No.106876. |
22 | SUN Y, QIU H, ZHENG Y, et al. SIFRank: a new baseline for unsupervised keyphrase extraction based on pre-trained language model [J]. IEEE Access, 2020, 8: 10896-10906. |
23 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1(Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. |
24 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
25 | WILLIAMS R J, ZIPSER D. A learning algorithm for continually running fully recurrent neural networks [J]. Neural Computation, 1989, 1(2): 270-280. |
26 | LEWIS D D, YANG Y, ROSE T G, et al. RCV1: a new benchmark collection for text categorization research [J]. Journal of Machine Learning Research, 2004, 5: 361-397. |
27 | KOWSARI K, BROWN D E, HEIDARYSAFA M, et al. HDLTex: hierarchical deep learning for text classification [C]// Proceedings of the 16th IEEE International Conference on Machine Learning and Applications. Piscataway: IEEE, 2017: 364-371. |
[1] | Zhigang XU, Chuang ZHANG. Multi-level color restoration of mural image based on gated positional encoding [J]. Journal of Computer Applications, 2024, 44(9): 2931-2937. |
[2] | Rui JIANG, Wei LIU, Cheng CHEN, Tao LU. Asymmetric unsupervised end-to-end image deraining network [J]. Journal of Computer Applications, 2024, 44(3): 922-930. |
[3] | Weina DONG, Jia LIU, Xiaozhong PAN, Lifeng CHEN, Wenquan SUN. High-capacity robust image steganography scheme based on encoding-decoding network [J]. Journal of Computer Applications, 2024, 44(3): 772-779. |
[4] | Guolong YUAN, Yujin ZHANG, Yang LIU. Image tampering forensics network based on residual feedback and self-attention [J]. Journal of Computer Applications, 2023, 43(9): 2925-2931. |
[5] | Zhirong HOU, Xiaodong FAN, Hua ZHANG, Xiaonan MA. J-SGPGN: paraphrase generation network based on joint learning of sequence and graph [J]. Journal of Computer Applications, 2023, 43(5): 1365-1371. |
[6] | Lu CHEN, Daoxi CHEN, Yiming LU, Weizhong LU. Handwritten mathematical expression recognition model based on attention mechanism and encoder-decoder [J]. Journal of Computer Applications, 2023, 43(4): 1297-1302. |
[7] | Hexuan HU, Huachao SUI, Qiang HU, Ye ZHANG, Zhenyun HU, Nengwu MA. Runoff forecast model based on graph attention network and dual-stage attention mechanism [J]. Journal of Computer Applications, 2022, 42(5): 1607-1615. |
[8] | LIU Shize, QIN Yanjun, WANG Chenxing, SU Lin, KE Qixue, LUO Haiyong, SUN Yi, WANG Baohui. Traffic flow prediction algorithm based on deep residual long short-term memory network [J]. Journal of Computer Applications, 2021, 41(6): 1566-1572. |
[9] | DU Xixi, CHENG Hua, FANG Yiquan. Reinforced automatic summarization model based on advantage actor-critic algorithm [J]. Journal of Computer Applications, 2021, 41(3): 699-705. |
[10] | DING Xiangguo, SANG Jitao. Joint extraction of entities and relations based on relation-adaptive decoding [J]. Journal of Computer Applications, 2021, 41(1): 29-35. |
[11] | YANG Wenxia, WANG Meng, ZHANG Liang. Semantic face image inpainting based on U-Net with dense blocks [J]. Journal of Computer Applications, 2020, 40(12): 3651-3657. |
[12] | JIA Ruiming, QIU Zhenzhi, CUI Jiali, WANG Yiding. Deep multi-scale encoder-decoder convolutional network for blind deblurring [J]. Journal of Computer Applications, 2019, 39(9): 2552-2557. |
[13] | ZHENG Yanbin, LI Bo, AN Deyu, LI Na. Multi-Agent path planning algorithm based on hierarchical reinforcement learning and artificial potential field [J]. Journal of Computer Applications, 2015, 35(12): 3491-3496. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||