1 |
徐月梅,胡玲,赵佳艺,等. 大语言模型与多语言智能的研究进展与启示[J]. 计算机应用, 2023, 43(S2): 1-8.
|
|
XU Y M, HU L, ZHAO J Y, et al. Research progress and enlightenment of large language models on multi-lingual intelligence[J]. Journal of Computer Applications, 2023, 43(S2): 1-8.
|
2 |
陈炫婷,叶俊杰,祖璨,等. GPT系列大语言模型在自然语言处理任务中的鲁棒性[J]. 计算机研究与发展, 2024, 61(5):1128-1142.
|
|
CHEN X T, YE J J, ZU C, et al. Robustness of GPT large language models on natural language processing tasks [J]. Journal of Computer Research and Development, 2024, 61(5): 1128-1142.
|
3 |
陈璐,张儒清,郭嘉丰,等. 面向文本摘要的反事实纠偏方法[J]. 计算机学报, 2023, 46(11):2400-2415.
|
|
CHEN L, ZHANG R Q, GUO J F, et al. Counterfactual debiasing for text summarization[J]. Chinese Journal of Computers, 2023, 46(11):2400-2415.
|
4 |
ZHANG S, PAN L, ZHAO J, et al. The knowledge alignment problem: bridging human and external knowledge for large language models [C]// Findings of the Association for Computational Linguistics: ACL 2024. Stroudsburg: ACL, 2024: 2025-2038.
|
5 |
HUANG L, YU W, MA W, et al. A survey on hallucination in large language models: principles, taxonomy, challenges, and open questions [EB/OL]. [2024-05-23]. .
|
6 |
ZHENG S, HUANG J, CHANG K C C. Why does ChatGPT fall short in providing truthful answers [EB/OL]. [2024-08-23]..
|
7 |
ZHANG M, PRESS O, MERRILL W, et al. How language model hallucinations can snowball [C]// Proceedings of the 41st International Conference on Machine Learning. New York: JMLR.org, 2024:59670-59684.
|
8 |
LIN S, HILTON J, EVANS O. TruthfulQA: measuring how models mimic human falsehoods [C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2022: 3214-3252.
|
9 |
LI J, CHENG X, ZHAO X, et al. HaluEval: a large-scale hallucination evaluation benchmark for large language models [C]// Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2023: 6449-6464.
|
10 |
MIN S, KRISHNA K, LYU X, et al. FActScore: fine-grained atomic evaluation of factual precision in long form text generation[C]// Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2023: 12076-12100.
|
11 |
LEE N, PING W, XU P, et al. Factuality enhanced language models for open-ended text generation [C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022:34586-34599.
|
12 |
MANAKUL P, LIUSIE A, GALES M. SelfCheckGPT: zero-resource black-box hallucination detection for generative large language models [C]// Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2023: 9004-9017.
|
13 |
PENG B, GALLEY M, HE P, et al. Check your facts and try again: improving large language models with external knowledge and automated feedback[EB/OL]. [2024-08-23]. .
|
14 |
HUANG K H, CHAN H P, JI H. Zero-shot faithful factual error correction [C]// Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2023: 5660-5676.
|
15 |
GOU Z, SHAO Z, GONG Y, et al. CRITIC: large language models can self-correct with tool-interactive critiquing [EB/OL]. [2024-08-24]..
|
16 |
LI K, PATEL O, VIÉGAS F, et al. Inference-time intervention: eliciting truthful answers from a language model [C]// Proceedings of the 37th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2023: 41451-41530.
|
17 |
CHEN A, PASUPAT P, SINGH S, et al. PURR: efficiently editing language model hallucinations by denoising language model corruptions [EB/OL]. [2024-08-13]. .
|
18 |
DU Y, LI S, TORRALBA A, et al. Improving factuality and reasoning in language models through multiagent debate [C]//Proceedings of the 41st International Conference on Machine Learning. New York: JMLR.org, 2024:11733-11763.
|
19 |
ZHANG Y, LI Y, CUI L, et al. Siren’s song in the AI ocean: a survey on hallucination in large language models [EB/OL]. [2024-07-23]. .
|