Journal of Computer Applications ›› 2026, Vol. 46 ›› Issue (1): 33-42.DOI: 10.11772/j.issn.1001-9081.2024121840

• Artificial intelligence • Previous Articles     Next Articles

Federated split learning optimization method under edge heterogeneity

Hao YU1,2,3, Jing FAN1,2,3(), Yihang SUN1,2,3, Yadong JIN1,2,3, Enkang XI1,2,3, Hua DONG1,2,3   

  1. 1.College of Electrical and Information Technology,Yunnan Minzu University,Kunming Yunnan 650504,China
    2.Yunnan Key Laboratory of Unmanned Autonomous System (Yunnan Minzu University),Kunming Yunnan 650504,China
    3.Key Laboratory of Information and Communication Security and Disaster Recovery in Universities of Yunnan Province (Yunnan Minzu University),Kunming Yunnan 650504,China
  • Received:2025-01-02 Revised:2025-03-10 Accepted:2025-03-18 Online:2026-01-10 Published:2026-01-10
  • Contact: Jing FAN
  • About author:YU Hao, born in 2000, M. S. candidate. His research interests include federated learning, split learning, edge computing.
    SUN Yihang, born in 2001, M. S. candidate. His research interests include federated learning, asynchronous communication.
    JIN Yadong, born in 1998, M. S. candidate. His research interests include federated learning, space-air-ground integrated network.
    XI Enkang, born in 2000, M. S. candidate. His research interests include federated learning, privacy security.
    DONG Hua, born in 2001, M. S. candidate. His research interests include federated learning, computational efficiency optimization.
  • Supported by:
    Ministry of Education — New Generation of Information Technology Innovation Project(2023IT077);Scientific Research Foundation of Education Department of Yunnan Province(2025Y0670);Project of Wu Zhonghai Expert Workstation(202305AF150045)

边缘异构下的联邦分割学习优化方法

俞浩1,2,3, 范菁1,2,3(), 孙伊航1,2,3, 金亚东1,2,3, 郗恩康1,2,3, 董华1,2,3   

  1. 1.云南民族大学 电气信息工程学院,昆明 650504
    2.云南省无人自主系统重点实验室(云南民族大学),昆明 650504
    3.云南省高校信息与通信安全灾备重点实验室(云南民族大学),昆明 650504
  • 通讯作者: 范菁
  • 作者简介:俞浩(2000—),男,湖北咸宁人,硕士研究生,CCF学生会员,主要研究方向:联邦学习、分割学习、边缘计算
    孙伊航(2001—),男(回族),河南许昌人,硕士研究生,主要研究方向:联邦学习、异步通信
    金亚东(1998—),男(彝族),云南昆明人,硕士研究生,主要研究方向:联邦学习、空天地一体化网络
    郗恩康(2000—),男,山东枣庄人,硕士研究生,主要研究方向:联邦学习、隐私安全
    董华(2001—),男,山西运城人,硕士研究生,主要研究方向:联邦学习、计算效率优化。
  • 基金资助:
    教育部-新一代信息技术创新项目(2023IT077);云南省教育厅科学研究基金资助项目(2025Y0670);云南省吴中海专家工作站项目(202305AF150045)

Abstract:

Federated learning (FL), as a privacy-preserving distributed learning framework, has solved the data silo problem effectively. However, the heterogeneous characteristics of Internet of Things (IoT) terminal devices in real-world scenarios, particularly device performance variations and Non-Independent and Identically Distributed (Non-IID) data properties, will cause degradation of the model performance and convergence speed. To address these challenges, a federated split learning optimization method under edge heterogeneity named FedCRS (Federated Cluster-based Round Splitting) was proposed. Firstly, an adaptive clustering strategy based on device performance was developed to cluster the clients dynamically, and assign customized sub-models for the clusters to balance computational loads, thereby solving straggler effect caused by device heterogeneity. Then, a ring-topology cyclic model transfer mechanism was created, where local model fusion of intra-cluster clients was implemented to alleviate client drift caused by data heterogeneity while enhancing global model robustness and generalization capability significantly. Experimental results on three label-heterogeneous datasets (FMNIST, CIFAR-10, and CIFAR-100) demonstrate that compared with five baseline methods (FedAvg (Federated Averaging), FedProx, MOON (MOdel-cONtrastive learning), SplitFed, and SplitMix (Split Mixing) ), FedCRS has the best accuracy on all the datasets, and has the accuracy improvements of at least 8.7, 11.1, and 2.1 percentage points, respectively; and on FMINST, CIFAR-10 datasets, FedCRS has the convergence acceleration reached 78.1%and13.2%, respectively. It can be seen that FedCRS is effective in optimizing model accuracy and convergence speed under edge heterogeneous environments, indicating good practical application prospects.

Key words: Federated Learning (FL), heterogeneity, split learning, cyclic topology, efficiency

摘要:

联邦学习(FL)作为一种以隐私保护为核心的分布式学习框架,已有效解决了数据孤岛问题。然而,现实中的物联网(IoT)终端设备通常呈现出异构特性,特别是设备性能的差异以及数据的非独立同分布(Non-IID)特性,这些会导致模型的性能和收敛速度下降。针对这些挑战,提出一种边缘异构下的联邦分割学习优化方法FedCRS (Federated Cluster-based Round Splitting)。首先,通过基于设备性能的自适应聚类策略,动态地将客户端分簇,并为每个簇设计适配的子模型,以平衡计算负载,从而解决设备异构性带来的落后者效应;其次,提出一种环形拓扑的循环模型传递机制,以通过簇内客户端局部模型的融合缓解数据异构性带来的客户端漂移现象,并显著提升全局模型的鲁棒性与泛化能力。在FMNIST、CIFAR-10和CIFAR-100共3个标签异构分布的数据集上的实验结果表明,相较于FedAvg (Federated Averaging)、FedProx、MOON (MOdel-cONtrastive learning)、SplitFed和SplitMix (Split Mixing)这5种基线方法,所提方法在精度上均取得最优表现,至少分别提高了8.7、11.1和2.1个百分点;同时在FMNIST、CIFAR-10数据集上的收敛速度至少分别提升了78.1%和13.2%。可见, FedCRS在边缘异构环境下优化联邦模型精度与收敛速度时是有效的,展现出较好的实际应用前景。

关键词: 联邦学习, 异构性, 分割学习, 循环拓扑, 高效性

CLC Number: