Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (5): 1447-1454.DOI: 10.11772/j.issn.1001-9081.2024070928
• Artificial intelligence • Previous Articles
Yiming ZHANG1,2, Tengfei CAO1,2()
Received:
2024-07-05
Revised:
2024-08-20
Accepted:
2024-08-26
Online:
2024-08-29
Published:
2025-05-10
Contact:
Tengfei CAO
About author:
ZHANG Yiming, born in 1999, M. S. candidate. His research interests include federated learning, privacy protection.Supported by:
通讯作者:
曹腾飞
作者简介:
张一鸣(1999—),男,江苏无锡人,硕士研究生,主要研究方向:联邦学习、隐私保护基金资助:
CLC Number:
Yiming ZHANG, Tengfei CAO. Federated learning optimization algorithm based on local drift and diversity computing power[J]. Journal of Computer Applications, 2025, 45(5): 1447-1454.
张一鸣, 曹腾飞. 基于本地漂移和多样性算力的联邦学习优化算法[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1447-1454.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024070928
算法 | MNIST | CIFAR-10 | CIFAR-100 | |||
---|---|---|---|---|---|---|
50客户端 | 100客户端 | 50客户端 | 100客户端 | 50客户端 | 100客户端 | |
FedAvg | 98.12±0.11 | 98.15±0.11 | 82.16±0.15 | 82.25±0.44 | 40.01±0.11 | 39.75±0.12 |
FedProx | 98.11±0.10 | 98.12±0.14 | 82.01±0.25 | 82.55±0.35 | 40.15±0.27 | 40.52±0.43 |
SCAFFOLD | 98.31±0.16 | 98.42±0.12 | 84.52±0.38 | 84.69±0.12 | 49.55±0.08 | 51.25±0.11 |
FedLD | 98.50±0.12 | 98.66±0.19 | 85.69±0.30 | 86.22±0.35 | 55.39±0.18 | 55.60±0.13 |
Tab. 1 Prediction accuracies of federated learning algorithms with different number of clients on different datasets
算法 | MNIST | CIFAR-10 | CIFAR-100 | |||
---|---|---|---|---|---|---|
50客户端 | 100客户端 | 50客户端 | 100客户端 | 50客户端 | 100客户端 | |
FedAvg | 98.12±0.11 | 98.15±0.11 | 82.16±0.15 | 82.25±0.44 | 40.01±0.11 | 39.75±0.12 |
FedProx | 98.11±0.10 | 98.12±0.14 | 82.01±0.25 | 82.55±0.35 | 40.15±0.27 | 40.52±0.43 |
SCAFFOLD | 98.31±0.16 | 98.42±0.12 | 84.52±0.38 | 84.69±0.12 | 49.55±0.08 | 51.25±0.11 |
FedLD | 98.50±0.12 | 98.66±0.19 | 85.69±0.30 | 86.22±0.35 | 55.39±0.18 | 55.60±0.13 |
算法 | 准确率/% | 每轮训练时间/s |
---|---|---|
FedProc | 55.10±0.41 | 1 675 |
FedLD | 55.39±0.18 | 1 648 |
Tab. 2 Comparison of FedLD and FedProc
算法 | 准确率/% | 每轮训练时间/s |
---|---|---|
FedProc | 55.10±0.41 | 1 675 |
FedLD | 55.39±0.18 | 1 648 |
1 | 孙兵,刘艳,王田,等.移动边缘网络中联邦学习效率优化综述[J].计算机研究与发展,2022,59(7):1439-1469. |
SUN B, LIU Y, WANG T, et al. Survey on optimization of federal learning efficiency in mobile edge networks[J]. Journal of Computer Research and Development, 2022, 59(7): 1439-1469. | |
2 | VOIGT P, VON DEM BUSSCHE A. The EU General Data Protection Regulation (GDPR): a practical guide [M]. Cham: Springer, 2017: 10-55. |
3 | 刘桂锋,阮冰颖,刘琼.加强数据安全防护提升数据治理能力——《中华人民共和国数据安全法(草案)》解读[J].农业图书情报学报, 2021, 33(4): 4-13. |
LIU G F, RUAN B Y, LIU Q. Enhance data security governance capability: interpretation of data security law of the People's Republic of China (Draft)[J]. Journal of Library and Information Sciences in Agriculture, 2021, 33(4): 4-13.. | |
4 | YANG Q, LIU Y, CHEN T, et al. Federated machine learning: concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): No.12. |
5 | 陈庆礼,郭渊博,方晨.面向数据异构的聚类联邦学习算法[J/OL].计算机应用,2024 [2024-07-02]. . |
CHEN Q L, GUO Y B, FANG C. Clustering federated learning algorithm for heterogeneous data [J/OL]. Journal of Computer Applications, 2024 [2024-07-02]. . | |
6 | XU C, QU Y, XIONG Y, et al. Asynchronous federated learning on heterogeneous devices: a survey[J]. Computer Science Review, 2023, 50: No.100595. |
7 | WANG K, MATHEWS R, KIDDON C, et al. Federated evaluation of on-device personalization[EB/OL]. [2024-03-22]. . |
8 | MALAN E, PELUSO V, CALIMERA A, et al. Communication-efficient federated learning with gradual layer freezing[J]. IEEE Embedded Systems Letters, 2023, 15(1): 25-28. |
9 | YE M, FANG X, DU B, et al. Heterogeneous federated learning: state-of-the-art and research challenges[J]. ACM Computing Surveys, 2024, 56(3): No.79. |
10 | 黄伟峰.基于联邦学习的移动边缘协同计算技术研究[D].西安:西安电子科技大学,2022. |
HUANG W F. Mobile edge collaborative computing technology based on federated learning[D]. Xi'an: Xidian University, 2022. | |
11 | WANG B, CHEN Y, JIANG H, et al. PPeFL: privacy-preserving edge federated learning with local differential privacy[J]. IEEE Internet of Things Journal, 2023, 10(17): 15488-15500. |
12 | NEW W K, WONG K K, XU H, et al. Fluid antenna system: new insights on outage probability and diversity gain[J]. IEEE Transactions on Wireless Communications, 2024, 23(1): 128-140. |
13 | 雷帅.面向边缘计算的联邦学习高效聚合策略研究[D].重庆:重庆邮电大学,2022. |
LEI S. Efficient aggregation strategies for federated learning in edge computing[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2022. | |
14 | HUANG X, LI P, LI X. Stochastic controlled averaging for federated learning with communication compression[EB/OL]. [2024-11-09]. . |
15 | KARIMIREDDY S P, KALE S, MOHRI M, et al. SCAFFOLD: stochastic controlled averaging for federated learning[C]// Proceedings of the 37th International Conference on Machine Learning. New York: ACM, 2020: 5132-5143. |
16 | MU X, SHEN Y, CHENG K, et al. FedProc: prototypical contrastive federated learning on non-IID data[J]. Future Generation Computer Systems, 2023, 143: 93-104. |
17 | McMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]// Proceedings of the 20th Artificial Intelligence and Statistics. New York: ACM, 2017: 1273-1282. |
18 | 王蓓蓓,朱竞,王嘉乐,等.电表数据隐私保护下的联邦学习行业电力负荷预测框架[J].电力系统自动化,2023,47(13):86-93. |
WANG B B, ZHU J, WANG J L, et al. Federated-learning based industry load forecasting framework under privacy protection of meter data[J]. Automation of Electric Power Systems, 2023, 47(13): 86-93. | |
19 | VARNO F, SAGHAYI M, RAFIEE SEVYERI L, et al. AdaBest: minimizing client drift in federated learning via adaptive bias estimation[C]// Proceedings of the 2022 European Conference on Computer Vision, LNCS 13683. Cham: Springer, 2022: 710-726. |
20 | BADAR M, NEJDL W, FISICHELLA M. FAC-Fed: federated adaptation for fairness and concept drift aware stream classification[J]. Machine Learning, 2023, 112(8): 2761-2786. |
21 | RAN H, WEN S, WANG S, et al. Memristor-based edge computing of ShuffleNetV2 for image classification[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40(8): 1701-1710. |
22 | GAO L, FU H, LI L, et al. FedDC: federated learning with non-iid data via local drift decoupling and correction[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 10102-10111. |
23 | 韩洁,陈俊芬,李艳,等.基于自注意力的自监督深度聚类算法[J].计算机科学,2022,49(3):134-143. |
HAN J, CHEN J F, LI Y, et al. Self-supervised deep clustering algorithm based on self-attention[J]. Computer Science, 2022, 49(3): 134-143. | |
24 | LI H, LUO L, WANG H. Federated learning on non-independent and identically distributed data[C]// Proceedings of the 3rd International Conference on Machine Learning and Computer Application. Bellingham, WA: SPIE, 2023, 12636: 126360O. |
25 | KAR B, YAHYA W, LIN Y D, et al. Offloading using traditional optimization and machine learning in federated cloud-edge-fog systems: a survey[J]. IEEE Communications Surveys and Tutorials, 2023, 25(2): 1199-1226. |
26 | LI T, SAHU A K, ZAHEER M, et al. Federated optimization in heterogeneous networks[C]// Proceedings of the 2020 Machine Learning and Systems 2. [S.l.]: MLSys, 2020: 429-450. |
27 | 何常乐,袁培燕.边缘联邦学习的客户端选择机制[J].计算机应用,2023,43(S1):147-153. |
HE C L, YUAN P Y. Client selection mechanism for federated learning in edge computing[J]. Journal of Computer Applications, 2023, 43(S1): 147-153. |
[1] | Qingli CHEN, Yuanbo GUO, Chen FANG. Clustering federated learning algorithm for heterogeneous data [J]. Journal of Computer Applications, 2025, 45(4): 1086-1094. |
[2] | Haili LIN, Jing LI. Lazy client identification method in federated learning based on proof-of-work [J]. Journal of Computer Applications, 2025, 45(3): 856-863. |
[3] | Quan WANG, Xinyu CAO, Qidong CHEN. Roadside traffic object detection model and deployment for vehicle-road collaboration [J]. Journal of Computer Applications, 2025, 45(3): 1016-1024. |
[4] | Yan LI, Guanhua YE, Yawen LI, Meiyu LIANG. Enterprise ESG indicator prediction model based on richness coordination technology [J]. Journal of Computer Applications, 2025, 45(2): 670-676. |
[5] | Shufen ZHANG, Hongyang ZHANG, Zhiqiang REN, Xuebin CHEN. Survey of fairness in federated learning [J]. Journal of Computer Applications, 2025, 45(1): 1-14. |
[6] | Zheyuan SHEN, Keke YANG, Jing LI. Personalized federated learning method based on dual stream neural network [J]. Journal of Computer Applications, 2024, 44(8): 2319-2325. |
[7] | Junna ZHANG, Xinxin WANG, Tianze LI, Xiaoyan ZHAO, Peiyan YUAN. Task offloading method based on dynamic service cache assistance [J]. Journal of Computer Applications, 2024, 44(5): 1493-1500. |
[8] | Xiaoyan ZHAO, Wei HAN, Junna ZHANG, Peiyan YUAN. Collaborative offloading strategy in internet of vehicles based on asynchronous deep reinforcement learning [J]. Journal of Computer Applications, 2024, 44(5): 1501-1510. |
[9] | Xiang LIU, Bei HUA, Fei LIN, Hongyuan WEI. Design and implementation of component-based development framework for deep learning applications [J]. Journal of Computer Applications, 2024, 44(2): 526-535. |
[10] | Ming ZHANG, Le FU, Haifeng WANG. Relay control model for concurrent data flow in edge computing [J]. Journal of Computer Applications, 2024, 44(12): 3876-3883. |
[11] | Jie WU, Xuezhong QIAN, Wei SONG. Personalized federated learning based on similarity clustering and regularization [J]. Journal of Computer Applications, 2024, 44(11): 3345-3353. |
[12] | Xuebin CHEN, Changsheng QU. Overview of backdoor attacks and defense in federated learning [J]. Journal of Computer Applications, 2024, 44(11): 3459-3469. |
[13] | Chunyong YIN, Yongcheng ZHOU. Automatically adjusted clustered federated learning for double-ended clustering [J]. Journal of Computer Applications, 2024, 44(10): 3011-3020. |
[14] | Hui ZHOU, Yuling CHEN, Xuewei WANG, Yangwen ZHANG, Jianjiang HE. Deep shadow defense scheme of federated learning based on generative adversarial network [J]. Journal of Computer Applications, 2024, 44(1): 223-232. |
[15] | Xuyan ZHAO, Yunhe CUI, Chaohui JIANG, Qing QIAN, Guowei SHEN, Chun GUO, Xianchao LI. CHAIN: edge computing node placement algorithm based on overlapping domination [J]. Journal of Computer Applications, 2023, 43(9): 2812-2818. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||