Journal of Computer Applications ›› 2026, Vol. 46 ›› Issue (1): 43-51.DOI: 10.11772/j.issn.1001-9081.2025010065

• Artificial intelligence • Previous Articles     Next Articles

Knowledge tracking model based on concept association memory network with graph attention

Fan HE1,2, Li LI1,2(), Zhongxu YUAN1,2, Xiu YANG1,2, Dongxuan HAN1,2,3   

  1. 1.School of Computer Science and Technology,Southwest University of Science and Technology,Mianyang Sichuan 621010,China
    2.Sichuan Industrial Autonomous and Controllable Artificial Intelligence Engineering Technology Research Center,Mianyang Sichuan 621010,China
    3.State Key Laboratory of Cognitive Intelligence (University of Science and Technology of China),Hefei Anhui 230088,China
  • Received:2025-01-15 Revised:2025-03-27 Accepted:2025-03-27 Online:2026-01-10 Published:2026-01-10
  • Contact: Li LI
  • About author:HE Fan, born in 2001, M. S. candidate. His research interests include smart education, knowledge tracing.
    YUAN Zhongxu, born in 2001, M. S. candidate. His research interests include natural language processing, large model fine-tuning.
    YANG Xiu, born in 2001, M. S. candidate. Her research interests include smart healthcare.
    HAN Dongxuan, born in 2001, Ph. D. candidate. His research interests include smart education, cognitive diagnosis.
  • Supported by:
    Key Support Program of National Natural Science Foundation of China(U21A20157)

融合图注意力的概念关联记忆网络知识追踪模型

何凡1,2, 李理1,2(), 苑中旭1,2, 杨秀1,2, 韩东轩1,2,3   

  1. 1.西南科技大学 计算机科学与技术学院,四川 绵阳 621010
    2.四川省工业自主可控人工智能工程技术研究中心,四川 绵阳 621010
    3.认知智能全国重点实验室(中国科学技术大学),安徽 合肥 230088
  • 通讯作者: 李理
  • 作者简介:何凡(2001—),男,四川绵阳人,硕士研究生, CCF会员,主要研究方向:智慧教育、知识追踪
    苑中旭(2001—),男,河南驻马店人,硕士研究生, CCF会员,主要研究方向:自然语言处理、大模型微调
    杨秀(2001—),女,四川成都人,硕士研究生, CCF会员,主要研究方向:智慧医疗
    韩东轩(2001—),男,四川绵阳人,博士研究生,主要研究方向:智慧教育、认知诊断。
  • 基金资助:
    国家自然科学基金重点支持项目(U21A20157)

Abstract:

Tracking students' historical interactions to predict their future performance is a critical research focus in the field of Knowledge Tracing (KT). Recent KT methods aim to explore students' learning patterns and evolving knowledge states to provide personalized learning guidance, but ignore the richness of exercises themselves. Additionally, with the emergence of new disciplines and interdisciplinary fields, Graph Neural Network (GNN) -based KT methods face challenges in the issues such as broadening the scope of concept associations and modeling students' learning behaviors. To address these challenges, a novel Knowledge Tracing (KT) model was proposed, termed the Knowledge Tracking model based on concept association Memory network with Graph Attention (GAMKT). The GAMKT is capable of modeling students' exercise interaction sequences, tracking their knowledge states, and capturing global features of related concepts from the exercise-concept graph. Moreover, a forgetting gate and higher-order information extraction were incorporated into the model to realistically simulate students' exercise-solving processes. Experimental results on the Junyi, ASSIST09, and Static2011 datasets demonstrate that, compared with seven baseline models including Graph-based Knowledge Tracing (GKT), GAMKT achieves average improvements of approximately 2.1% in Area Under the Curve (AUC) and 2.4% in Accuracy, indicating that GAMKT outperforms the baseline methods on datasets with well-structured knowledge.

Key words: Knowledge Tracing (KT), Graph Neural Network (GNN), self-attention, concept association, forgetting mechanism

摘要:

追踪学生的历史互动以预测他们的未来表现是知识追踪(KT)领域的关键研究重点。最近的KT方法旨在研究学生的学习模式和不断变化的知识状态,以提供个性化学习指导,而忽略了习题本身的丰富性。此外,随着新专业和跨学科领域的兴起,基于图神经网络(GNN)的KT方法面临着一些挑战:如何扩展概念之间关联的视野并建模学生的学习行为。为了应对这些挑战,提出一种新的KT模型——融合图注意力的概念关联记忆网络知识追踪模型(GAMKT)。GAMKT可以建模学生的习题记录,追踪他们的知识状态,并从习题-概念图中捕捉相关概念的全局特征;同时,将遗忘门和高阶信息提取纳入模型,以真实模拟学生的习题过程。在Junyi、ASSIST09和Static2011数据集上的对比实验结果表明, 与基于图神经网络的知识追踪(GKT)等7种模型相比,GAMKT的曲线下面积(AUC)和准确率分别平均至少提升了约2.1%和2.4%,表明GAMKT在成熟的知识结构数据集上优于基线模型。

关键词: 知识追踪, 图神经网络, 自注意力, 概念关联, 遗忘机制

CLC Number: