Journal of Computer Applications ›› 2012, Vol. 32 ›› Issue (06): 1574-1577.DOI: 10.3724/SP.J.1087.2012.01570

• Graphics and image technology • Previous Articles     Next Articles

New approach of fabric defects detection based on saliency region feature

ZHAO Bo1,Li-xin ZHENG2,PAN Xu-ling3,Kai-ting ZHOU2,XU Yuan-yuan4   

  1. 1. College of Computer Science and Technology, Huaqiao University, Xiamen Fujian 361021,China
    2. College of Information Science and Engineering,Huaqiao University,Quanzhou Fujian 362021,China
    3. College of Mathematical Science, Huaqiao University, Xiamen Fujian 362021,China
    4. College of Information Science and Engineering, Huaqiao University, Xiamen Fujian 361021,China
  • Received:2011-11-25 Revised:2012-01-09 Online:2012-06-04 Published:2012-06-01
  • Contact: ZHAO Bo

新的基于图像显著性区域特征的织物疵点检测算法

赵波1,郑力新2,潘旭玲3,周凯汀2,徐园园4   

  1. 1. 华侨大学 计算机科学与技术学院,福建 厦门 361021
    2. 华侨大学 信息科学与工程学院,福建 泉州 362021
    3. 华侨大学 数学科学学院,福建 厦门 362021
    4. 华侨大学 信息科学与工程学院,福建 厦门 361021
  • 通讯作者: 赵波
  • 作者简介:李莹莹(1975-), 女, 安徽淮北人,博士研究生,主要研究方向: 计算机图形学、图像处理;〓檀结庆(1962-),男,安徽望江人, 教授, 博士生导师,主要研究方向:非线性数值逼近理论与方法、科学计算、计算机辅助几何设计、计算机图形学、图像处理;〓钟金琴(1973-),女,安徽合肥人,博士研究生,主要研究方向:计算机图形学、图像处理;〓李燕(1964-),女,山东青州人,教授,博士,主要研究方向:无机材料的制备与性能。
  • 基金资助:
    福建省高等学校新世纪优秀人才支持计划;福建省产业计划开发项目“智能色选工业相机的研究与开发(25201071)”

Abstract: As the fabric defect type of diversity and traditional artificial detection methods inefficient ,in order to detect the fabric defect more effective, A new approach, SGE, based on saliency region feature for fabric defect detection is studied. In this approach, the original image is divided into two parts, one extracts the saliency region feature of fabric defect by improved FSR roughly, another employing the gabor filter and taking the amplitude as an output characteristics, and extracts the saliency region feature of fabric defect by PSR accurately, then by using maximum entropy to segment the saliency region respectively and fused the sub-images. The result is get got by calculating perimeter and area of the contours to removal the isolated points. The experiment selects four types of typical fabric defect images and OpenCV library is used. The experiment result shows that the algorithm, without prior learning,meet the real-time.

Key words: Defect detection, Saliency region feature, Gabor filter, Maximum entropy, OpenCV

摘要: 鉴于织物疵点类型的多样性和传统人工检测方法的低效率,为更有效地检测织物疵点,提出一种新的基于图像显著性特征的织物疵点检测方法——SGE。将原织物图分成相同两份:一份利用改进的基于频率的显著性区域(FSR)方法提取区域特征,粗定位疵点位置。另一份先Gabor滤波,取Gabor模图为输出特征;再利用基于像素的显著性区域(PSR)方法进行区域特征提取,细定位疵点位置;然后利用最大熵分别对粗细定位的疵点图进行分割,再融合;最后描绘轮廓,计算周长和面积,去除孤立点,得最终检测结果。采用OpenCV算法库,选取了4种具有代表的织物疵点图片进行验证。实验结果表明,这种粗细定位疵点的方法能够获得较好的检测结果,无需事先学习,能够满足实时性要求。

关键词: 疵点检测, 显著性区域特征, Gabor滤波器, 最大熵, OpenCV

CLC Number: