Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (11): 3200-3205.DOI: 10.11772/j.issn.1001-9081.2020121974
• Artificial intelligence • Previous Articles Next Articles
Received:
2020-12-15
Revised:
2021-07-28
Accepted:
2021-08-03
Online:
2021-05-11
Published:
2021-11-10
Contact:
Zhaoshui HE
About author:
LIU Taiheng, born in 1993, Ph. D. candidate. His research
interests include defect detection,deep learning,recommendation systemSupported by:
通讯作者:
何昭水
作者简介:
刘太亨(1993—),男,广东肇庆人,博士研究生,主要研究方向:缺陷检测、深度学习、推荐系统基金资助:
CLC Number:
Taiheng LIU, Zhaoshui HE. Surface defect detection method based on auto-encoding and knowledge distillation[J]. Journal of Computer Applications, 2021, 41(11): 3200-3205.
刘太亨, 何昭水. 基于自编码和知识蒸馏的表面缺陷检测方法[J]. 《计算机应用》唯一官方网站, 2021, 41(11): 3200-3205.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2020121974
卷积层 | Atrous因子 | 卷积大小 | 卷积层 | Atrous因子 | 卷积大小 |
---|---|---|---|---|---|
3 | 2 | 7 | 4 | ||
5 | 2 | 9 | 4 |
Tab. 1 Parameters of atrous convolution in AE network
卷积层 | Atrous因子 | 卷积大小 | 卷积层 | Atrous因子 | 卷积大小 |
---|---|---|---|---|---|
3 | 2 | 7 | 4 | ||
5 | 2 | 9 | 4 |
数据集 | 方法 | Accuracy | Precision | Recall | IoU |
---|---|---|---|---|---|
DAGM | CrackIT | 0.771 9 | 0.768 4 | 0.743 2 | 0.578 1 |
MPS | 0.823 5 | 0.866 6 | 0.900 6 | 0.597 3 | |
CrackForest | 0.869 1 | 0.902 8 | 0.865 8 | 0.614 7 | |
U-Net | 0.898 3 | 0.920 2 | 0.932 1 | 0.652 6 | |
Mask-RCNN | 0.899 6 | 0.920 8 | 0.935 2 | 0.654 3 | |
Fast-RCNN | 0.900 4 | 0.923 7 | 0.938 9 | 0.662 5 | |
FCN | 0.902 3 | 0.925 4 | 0.943 3 | 0.665 4 | |
SD_AEKD | 0.964 7 | 0.939 2 | 0.957 8 | 0.819 2 | |
Magnetic-tile | CrackIT | 0.813 5 | 0.791 3 | 0.754 2 | 0.674 2 |
MPS | 0.837 3 | 0.882 7 | 0.910 4 | 0.690 7 | |
CrackForest | 0.871 6 | 0.911 8 | 0.869 8 | 0.708 1 | |
U-Net | 0.908 1 | 0.926 9 | 0.928 7 | 0.764 9 | |
Mask-RCNN | 0.909 8 | 0.927 3 | 0.929 6 | 0.768 2 | |
Fast-RCNN | 0.911 4 | 0.929 4 | 0.935 8 | 0.770 6 | |
FCN | 0.913 7 | 0.930 2 | 0.944 9 | 0.782 4 | |
SD_AEKD | 0.975 2 | 0.940 9 | 0.963 1 | 0.901 8 |
Tab. 2 Performance index comparison of different methods in item surface defect detection
数据集 | 方法 | Accuracy | Precision | Recall | IoU |
---|---|---|---|---|---|
DAGM | CrackIT | 0.771 9 | 0.768 4 | 0.743 2 | 0.578 1 |
MPS | 0.823 5 | 0.866 6 | 0.900 6 | 0.597 3 | |
CrackForest | 0.869 1 | 0.902 8 | 0.865 8 | 0.614 7 | |
U-Net | 0.898 3 | 0.920 2 | 0.932 1 | 0.652 6 | |
Mask-RCNN | 0.899 6 | 0.920 8 | 0.935 2 | 0.654 3 | |
Fast-RCNN | 0.900 4 | 0.923 7 | 0.938 9 | 0.662 5 | |
FCN | 0.902 3 | 0.925 4 | 0.943 3 | 0.665 4 | |
SD_AEKD | 0.964 7 | 0.939 2 | 0.957 8 | 0.819 2 | |
Magnetic-tile | CrackIT | 0.813 5 | 0.791 3 | 0.754 2 | 0.674 2 |
MPS | 0.837 3 | 0.882 7 | 0.910 4 | 0.690 7 | |
CrackForest | 0.871 6 | 0.911 8 | 0.869 8 | 0.708 1 | |
U-Net | 0.908 1 | 0.926 9 | 0.928 7 | 0.764 9 | |
Mask-RCNN | 0.909 8 | 0.927 3 | 0.929 6 | 0.768 2 | |
Fast-RCNN | 0.911 4 | 0.929 4 | 0.935 8 | 0.770 6 | |
FCN | 0.913 7 | 0.930 2 | 0.944 9 | 0.782 4 | |
SD_AEKD | 0.975 2 | 0.940 9 | 0.963 1 | 0.901 8 |
数据集 | 方法 | Accuracy | Precision | Recall |
---|---|---|---|---|
DAGM | GLCM | 0.728 6 | 0.704 5 | 0.684 7 |
HOG | 0.689 9 | 0.648 3 | 0.632 2 | |
HOG+SOBEL | 0.697 6 | 0.656 1 | 0.643 5 | |
SD_AEKD | 0.904 1 | 0.897 7 | 0.886 4 | |
Magnetic-tile | GLCM | 0.832 9 | 0.859 3 | 0.832 7 |
HOG | 0.781 4 | 0.827 5 | 0.814 6 | |
HOG+SOBEL | 0.763 5 | 0.804 1 | 0.791 3 | |
SD_AEKD | 0.942 6 | 0.938 6 | 0.902 3 |
Tab. 3 Performance index comparison of different methods in item surface defect classification
数据集 | 方法 | Accuracy | Precision | Recall |
---|---|---|---|---|
DAGM | GLCM | 0.728 6 | 0.704 5 | 0.684 7 |
HOG | 0.689 9 | 0.648 3 | 0.632 2 | |
HOG+SOBEL | 0.697 6 | 0.656 1 | 0.643 5 | |
SD_AEKD | 0.904 1 | 0.897 7 | 0.886 4 | |
Magnetic-tile | GLCM | 0.832 9 | 0.859 3 | 0.832 7 |
HOG | 0.781 4 | 0.827 5 | 0.814 6 | |
HOG+SOBEL | 0.763 5 | 0.804 1 | 0.791 3 | |
SD_AEKD | 0.942 6 | 0.938 6 | 0.902 3 |
1 | XIAO Z T, LENG Y Y, GENG L, et al. Defect detection and classification of galvanized stamping parts based on fully convolution neural network [C]// Proceedings of the 2018 9th International Conference on Graphic and Image Processing. Bellingham: SPIE, 2018: Article No.106150K. 10.1117/12.2303601 |
2 | TSANG C S C, NGAN H Y T, PANG G K H. Fabric inspection based on the Elo rating method [J]. Pattern Recognition, 2016, 51: 378-394. 10.1016/j.patcog.2015.09.022 |
3 | 贺振东,王耀南,刘洁,等.基于背景差分的高铁钢轨表面缺陷图像分割[J].仪器仪表学报,2016,37(3):640-649. 10.3969/j.issn.0254-3087.2016.03.022 |
HE Z D, WANG Y N, LIU J, et al. Background differencing-based high-speed rail surface defect image segmentation [J]. Chinese Journal of Scientific Instrument, 2016, 37(3): 640-649. 10.3969/j.issn.0254-3087.2016.03.022 | |
4 | YAN Y P, KANEKO S, ASANO H. Accumulated and aggregated shifting of intensity for defect detection on micro 3D textured surfaces [J]. Pattern Recognition, 2020, 98: Article No.107057. 10.1016/j.patcog.2019.107057 |
5 | HECHT-NIELSEN R. Theory of the backpropagation neural network [J]. Neural Networks, 1988, 1(S1): 445. 10.1016/0893-6080(88)90469-8 |
6 | LIN C F, WANG S D. Fuzzy support vector machines [J]. IEEE Transactions on Neural Networks, 2002, 13(2): 464-471. 10.1109/72.991432 |
7 | JEON Y J, CHOI D C, YUN J P, et al. Detection of scratch defects on slab surface [C]// Proceedings of the 2011 11th International Conference on Control, Automation and Systems. Piscataway: IEEE, 2011: 1274-1278. |
8 | SONG K C, YAN Y H. A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects [J]. Applied Surface Science, 2013, 285(Pt B): 858-864. 10.1016/j.apsusc.2013.09.002 |
9 | DING S M, LIU Z F, LI C L. AdaBoost learning for fabric defect detection based on HOG and SVM [C]// Proceedings of the 2011 International Conference on Multimedia Technology. Piscataway: IEEE, 2011: 2903-2906. 10.1109/icmt.2011.6001937 |
10 | CHONDRONASIOS A, POPOV I, JORDANOV I. Feature selection for surface defect classification of extruded aluminum profiles [J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(1/2/3/4): 33-41. 10.1007/s00170-015-7514-3 |
11 | HAO X, ZHANG G G, MA S. Deep learning [J]. International Journal of Semantic Computing, 2016, 10(3): 417-439. 10.1142/s1793351x16500045 |
12 | TAO X, ZHANG D P, MA W Z, et al. Automatic metallic surface defect detection and recognition with convolutional neural networks [J]. Applied Sciences, 2018, 8(9): Article No.1575. 10.3390/app8091575 |
13 | YU Z Y, WU X J, GU X D. Fully convolutional networks for surface defect inspection in industrial environment [C]// Proceedings of the 2017 International Conference on Computer Vision Systems, LNCS10528. Cham: Springer, 2017: 417-426. |
14 | HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network [EB/OL]. (2015-03-09) [2020-11-22]. . |
15 | ROMERO A, BALLAS N, KAHOU S E, et al. FitNets: hints for thin deep nets [EB/OL]. (2015-03-27) [2020-11-22].. |
16 | LI Q Q, JIN S Y, YAN J J. Mimicking very efficient network for object detection [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 7341-7349. 10.1109/cvpr.2017.776 |
17 | WEI Y, PAN X Y, QIN H W, et al. Quantization mimic: towards very tiny CNN for object detection [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS11212. Cham: Springer, 2018: 274-290. |
18 | TANG S T, FENG L T, SHAO W Q, et al. Learning efficient detector with semi-supervised adaptive distillation [C]// Proceedings of the 2019 British Machine Vision Conference. Durham: BMVA Press, 2019: Article No.21. |
19 | LIU Y F, CHEN K, LIU C, et al. Structured knowledge distillation for semantic segmentation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2599-2608. 10.1109/cvpr.2019.00271 |
20 | HE T, SHEN C H, TIAN Z, et al. Knowledge adaptation for efficient semantic segmentation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 578-587. 10.1109/cvpr.2019.00067 |
21 | SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5686-5696. 10.1109/cvpr.2019.00584 |
22 | OLIVEIRA H, CORREIA P L. CrackIT — an image processing toolbox for crack detection and characterization [C]// Proceedings of the 2014 IEEE International Conference on Image Processing. Piscataway: IEEE, 2014: 798-802. 10.1109/icip.2014.7025160 |
23 | AMHAZ R, CHAMBON S, IDIER J, et al. Automatic crack detection on two-dimensional pavement images: an algorithm based on minimal path selection [J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(10): 2718-2729. 10.1109/tits.2015.2477675 |
24 | SHI Y, CUI L M, QI Z Q, et al. Automatic road crack detection using random structured forests [J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12): 3434-3445. 10.1109/tits.2016.2552248 |
25 | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation [C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS9351. Cham: Springer, 2015: 234-241. |
26 | HU B, WANG J H. Detection of PCB surface defects with improved faster-RCNN and feature pyramid network [J]. IEEE Access, 2020, 8: 108335-108345. 10.1109/access.2020.3001349 |
27 | HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988. 10.1109/iccv.2017.322 |
[1] | ZHANG Cheng, WAN Yuan, QIANG Haopeng. Deep unsupervised discrete cross-modal hashing based on knowledge distillation [J]. Journal of Computer Applications, 2021, 41(9): 2523-2531. |
[2] | HUANG Jishuang, ZHANG Hua, LI Yonglong, ZHAO Hao, WANG Haoran, FENG Chuncheng. Hydraulic tunnel defect recognition method based on dynamic feature distillation [J]. Journal of Computer Applications, 2021, 41(8): 2358-2365. |
[3] | WU Zeju, JIAO Cuijuan, CHEN Liang. Tire defect detection method based on improved Faster R-CNN [J]. Journal of Computer Applications, 2021, 41(7): 1939-1946. |
[4] | GAO Qinquan, HUANG Bingcheng, LIU Wenzhe, TONG Tong. Bamboo strip surface defect detection method based on improved CenterNet [J]. Journal of Computer Applications, 2021, 41(7): 1933-1938. |
[5] | SHI Yangxiao, ZHANG Jun, CHEN Peng, WANG Bing. Classification of steel surface defects based on lightweight network [J]. Journal of Computer Applications, 2021, 41(6): 1836-1841. |
[6] | TAN Zhaoyi, CHEN Baifan. Enhanced vehicle 3D surround view based on coordinate inverse mapping [J]. Journal of Computer Applications, 2021, 41(4): 1165-1171. |
[7] | Haojie LOU, Yuanlin ZHENG, Kaiyang LIAO, Hao LEI, Jia LI. Defect target detection for printed matter based on Siamese-YOLOv4 [J]. Journal of Computer Applications, 2021, 41(11): 3206-3212. |
[8] | WEI Chunwu, ZHAO Juanjuan, TANG Xiaoxian, QIANG Yan. Knowledge extraction method for follow-up data based on multi-term distillation network [J]. Journal of Computer Applications, 2021, 41(10): 2871-2878. |
[9] | ZHANG Jing'ai, WANG Jiangtao. Magnetic tile surface quality recognition based on multi-scale convolution neural network and within-class mixup operation [J]. Journal of Computer Applications, 2021, 41(1): 275-279. |
[10] | WANG Siyu, GAO Weixin, LI Lu. Image quality evaluation model for X-ray circumferential welds [J]. Journal of Computer Applications, 2020, 40(9): 2748-2753. |
[11] | ZHANG Yonghong, LIU Hao, TIAN Wei, WANG Jiangeng. Rainfall cloud segmentation method in Tibet based on DeepLab v3 [J]. Journal of Computer Applications, 2020, 40(9): 2781-2788. |
[12] | ZHANG Shuping, WU Wen, WAN Yi. Single image shadow removal method based on multistage generative adversarial network [J]. Journal of Computer Applications, 2020, 40(8): 2378-2385. |
[13] | YUAN Yuan, WU Wen, WAN Yi. Single image shadow detection method based on entropy driven domain adaptive learning [J]. Journal of Computer Applications, 2020, 40(7): 2131-2136. |
[14] | ZHOU Siyu, BAO Guoqi, LIU Kai. lmage vignetting correction based on constrained log-intensity entropy under low-pass filtering [J]. Journal of Computer Applications, 2020, 40(6): 1812-1817. |
[15] | FU Lei, REN Dejun, WU Huayun, GAO Ming, QIU Lyu, HU Yunqi. Real-time segmentation algorithm for bubble defects of plastic bottle based on improved Fast-SCNN [J]. Journal of Computer Applications, 2020, 40(6): 1824-1829. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||