[1] HE Y,SONG K,MENG Q,et al. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features[J]. IEEE Transactions on Instrumentation and Measurement, 2020,69(4):1493-1504. [2] DONG H,SONG K,HE Y,et al. PGA-Net:pyramid feature fusion and global context attention network for automated surface defect detection[J]. IEEE Transactions on Industrial Informatics, 2020,16(12):7448-7458. [3] RAZAVIAN A S, AZIZPOUR H, SULLIVAN J, et al. CNN features off-the-shelf:an astounding baseline for recognition[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE, 2014:512-519. [4] AMATO G,FALCHI F,GENNARO C. Geometric consistency checks for kNN based image classification relying on local features[C]//Proceedings of the 2011 4th International Conference on Similarity Search and Applications. New York:ACM, 2011:81-88. [5] LIN Y,LV F,ZHU S,et al. Large-scale image classification:fast feature extraction and SVM training[C]//Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2011:1689-1696. [6] WANG J, YANG Y, MAO J, et al. CNN-RNN:a unified framework for multi-label image classification[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:2285-2294. [7] SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2020-07-20]. http://arxiv.org/pdf/1409.1556.pdf. [8] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [9] HOWARD A G,ZHU M,CHEN B,et al. MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2020-06-08]. https://arxiv.org/pdf/1704.04861.pdf. [10] SANDLER M,HOWARD A,ZHU M,et al. MobileNetV2:inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:4510-4520. [11] ZHANG X,ZHOU X,LIN M,et al. ShuffleNet:an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:6848-6856. [12] IANDOLA F N,HAN S,MOSKEWICZ M W,et al. SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[EB/OL].[2020-07-07]. https://arxiv.org/pdf/1602.07360.pdf. [13] HU J,SHEN L,SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:7132-7141. [14] 姚明海, 陈志浩. 基于深度主动学习的磁片表面缺陷检测[J]. 计算机测量与控制, 2018, 26(9):29-33.(YAO M H,CHEN Z H. Deep active learning in detection of surface defects on magnetic sheet[J]. Computer Measurement and Control,2018,26(9):29-33.) [15] 张琪, 王国栋, 赵希梅, 等. 基于轻量级卷积神经网络的肝部病理组织切片分类[J]. 青岛大学学报(自然科学版), 2018, 31(4):76-82. (ZHANG Q,WANG G D,ZHAO X M,et al. Classification of liver pathological tissue sections based on the lightweight convolutional neural network[J]. Journal of Qingdao University(Natural Science Edition),2018,31(4):76-82.) [16] QIN Z,ZHANG Z,ZHANG S,et al. Merging and evolution:improving convolutional neural networks for mobile applications[EB/OL].[2020-07-12]. https://arxiv.org/pdf/1803.09127.pdf. [17] TAN M, LE Q V. MixConv:mixed depthwise convolutional kernels[EB/OL].[2020-08-02]. https://arxiv.org/pdf/1907.09595.pdf. [18] IOFFE S,SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 201532nd International Conference on Machine Learning. New York:ACM, 2015:448-456. [19] CHOLLET F. Xception:deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:1800-1807. [20] SZEGEDY C,VANHOUCKE V,IOFFE S,et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:2818-2826. [21] ZOPH B, VASUDEVAN V, SHLENS J, et al. Learning transferable architectures for scalable image recognition[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:8697-8710. [22] SONG K,YAN Y. A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects[J]. Applied Surface Science,2013,285(Pt B):858-864. [23] REN R,HUNG T,TAN K C,et al. A generic deep-learningbased approach for automated surface inspection[J]. IEEE Transactions on Cybernetics,2018,48(3):929-940. [24] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:1-9. [25] KRIZHEVSKY A,SUTSKEVER I,HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 2012 25th International Conference on Neural Information Processing Systems. Red Hook:Curran Associates Inc.,2012:1097-1105. |