| 1 | 王志明. 无参考图像质量评价综述[J]. 自动化学报, 2015, 41(6):1062-1079.  10.16383/j.aas.2015.c140404 | 
																													
																							|  | WANG Z M. Review of no-reference image quality assessment[J]. Acta Automatica Sinica, 2015, 41(6): 1062-1079.  10.16383/j.aas.2015.c140404 | 
																													
																							| 2 | 房亚男. 数字视频图像质量检测关键技术研究[J]. 科技创新导报, 2013(16): 22-26.  10.3969/j.issn.1674-098X.2013.16.016 | 
																													
																							|  | FANG Y N. Research on key technologies of digital video image quality detection[J]. Science and Technology Innovation Herald, 2013(16): 22-26.  10.3969/j.issn.1674-098X.2013.16.016 | 
																													
																							| 3 | WANG F L, ZUO B. Detection of surface cutting defect on MagNet using Fourier image reconstruction[J]. Journal of Central South University, 2016, 23(5): 1123-1131.  10.1007/s11771-016-0362-y | 
																													
																							| 4 | WEE C Y, PARAMESRAN R. Image sharpness measure using eigenvalues[C]// Proceedings of the 9th International Conference on Signal Processing. Piscataway: IEEE, 2008: 840-843.  10.1109/icosp.2008.4697259 | 
																													
																							| 5 | HOU Z, PARKER J M. Texture defect detection using support vector machines with adaptive Gabor wavelet features[C]// Proceedings of the 7th IEEE Workshops on Applications of Computer Vision. Piscataway: IEEE, 2005: 275-280.  10.1109/acvmot.2005.115 | 
																													
																							| 6 | CHA Y J, CHOI W, SUH G, et al. Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(9): 731-747.  10.1111/mice.12334 | 
																													
																							| 7 | TAO X, ZHANG D P, WANG Z H, et al. Detection of power line insulator defects using aerial images analyzed with convolutional neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(4): 1486-1498.  10.1109/tsmc.2018.2871750 | 
																													
																							| 8 | HE Y, SONG K C, MENG Q G, et al. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(4): 1493-1504.  10.1109/tim.2019.2915404 | 
																													
																							| 9 | 陶显,侯伟,徐德. 基于深度学习的表面缺陷检测方法综述[J]. 自动化学报, 2021, 47(5):1017-1034. | 
																													
																							|  | TAO X, HOU W, XU D. A survey of surface defect detection methods based on deep learning[J]. Acta Automatica Sinica, 2021, 47(5): 1017-1034. | 
																													
																							| 10 | LI J Y, SU Z F, GENG J H, et al. Real-time detection of steel strip surface defects based on improved YOLO detection network[J]. IFAC-PapersOnLine, 2018, 51(21): 76-81.  10.1016/j.ifacol.2018.09.412 | 
																													
																							| 11 | ZHANG C B, CHANG C C, JAMSHIDI M. Concrete bridge surface damage detection using a single-stage detector[J]. Computer-Aided Civil and Infrastructure Engineering, 2020, 35(4): 389-409.  10.1111/mice.12500 | 
																													
																							| 12 | CHEN S H, TSAI C C. SMD LED chips defect detection using a YOLOv3-dense model[J]. Advanced Engineering Informatics, 2021, 47: No.101255.  10.1016/j.aei.2021.101255 | 
																													
																							| 13 | RUFF L, VANDERMEULEN R A, GÖRNITZ N, et al. Deep one-class classification[C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 4393-4402. | 
																													
																							| 14 | BERGMANN P, FAUSER M, SATTLEGGER D, et al. Uninformed students: student-teacher anomaly detection with discriminative latent embeddings[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 4182-4191.  10.1109/cvpr42600.2020.00424 | 
																													
																							| 15 | LIZNERSKI P, RUFF L, VANDERMEULEN R A, et al. Explainable deep one-class classification[EB/OL]. (2021-03-18) [2022-09-09].. | 
																													
																							| 16 | GOLAN I, EL-YANIV R. Deep anomaly detection using geometric transformations[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 9781-9791. | 
																													
																							| 17 | HASELMANN M, GRUBER D P, TABATABAI P. Anomaly detection using deep learning based image completion[C]// Proceedings of the 17th IEEE International Conference on Machine Learning and Applications. Piscataway: IEEE, 2018: 1237-1242.  10.1109/icmla.2018.00201 | 
																													
																							| 18 | SAKURADA M, YAIRI T. Anomaly detection using autoencoders with nonlinear dimensionality reduction[C]// Proceedings of the MLSDA 2nd Workshop on Machine Learning for Sensory Data Analysis. New York: ACM, 2014: 4-11.  10.1145/2689746.2689747 | 
																													
																							| 19 | ZHOU C, PAFFENROTH R C. Anomaly detection with robust deep autoencoders[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2017: 665-674.  10.1145/3097983.3098052 | 
																													
																							| 20 | GUPTA K, BHAVSAR A, SAO A K. Detecting mitotic cells in HEp-2 images as anomalies via one class classifier[J]. Computers in Biology and Medicine, 2019, 111: No.103328.  10.1016/j.compbiomed.2019.103328 | 
																													
																							| 21 | NAPOLETANO P, PICCOLI F, SCHETTINI R. Anomaly detection in nanofibrous materials by CNN-based self-similarity[J]. Sensors, 2018, 18(1): No.209.  10.3390/s18010209 | 
																													
																							| 22 | CANDÈS E J, LI X D, MA Y, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3): No.11.  10.1145/1970392.1970395 | 
																													
																							| 23 | GONG D, LIU L Q, LE V, et al. Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1705-1714.  10.1109/iccv.2019.00179 | 
																													
																							| 24 | SCHLEGL T, SEEBÖCK P, WALDSTEIN S M, et al. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[C]// Proceedings of the 2017 International Conference on Information Processing in Medical Imaging, LNCS 10265. Cham: Springer, 2017: 146-157. | 
																													
																							| 25 | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8693. Cham: Springer, 2014: 740-755. | 
																													
																							| 26 | EVERINGHAM M, van GOOL L, WILLIAMS C K I, et al. The PASCAL Visual Object Classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338.  10.1007/s11263-009-0275-4 | 
																													
																							| 27 | BUDA M, MAKI A, MAZUROWSKI M A. A systematic study of the class imbalance problem in convolutional neural networks[J]. Neural Networks, 2018, 106: 249-259.  10.1016/j.neunet.2018.07.011 | 
																													
																							| 28 | HE H B, GARCIA E A. Learning from imbalanced data[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1263-1284.  10.1109/tkde.2008.239 | 
																													
																							| 29 | OUYANG W L, WANG X G, ZHANG C, et al. Factors in finetuning deep model for object detection with long-tail distribution[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 864-873.  10.1109/cvpr.2016.100 | 
																													
																							| 30 | BYRD J, LIPTON Z C. What is the effect of importance weighting in deep learning?[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 872-881. | 
																													
																							| 31 | SHEN L, LIN Z C, HUANG Q M. Relay backpropagation for effective learning of deep convolutional neural networks[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9911. Cham: Springer, 2016: 467-482. | 
																													
																							| 32 | CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357.  10.1613/jair.953 | 
																													
																							| 33 | CUI Y, JIA M L, LIN T Y, et al. Class-balanced loss based on effective number of samples[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9260-9269.  10.1109/cvpr.2019.00949 | 
																													
																							| 34 | WANG Y X, RAMANAN D, HEBERT M. Learning to model the tail[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 7032-7042. | 
																													
																							| 35 | HUANG C, LI Y N, LOY C C, et al. Learning deep representation for imbalanced classification[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 5375-5384.  10.1109/cvpr.2016.580 | 
																													
																							| 36 | ZHANG X, FANG Z Y, WEN Y D, et al. Range loss for deep face recognition with long-tailed training data[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 5419-5428.  10.1109/iccv.2017.578 | 
																													
																							| 37 | CAO K D, WEI C, GAIDON A, et al. Learning imbalanced datasets with label-distribution-aware margin loss[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2019: 1567-1578. | 
																													
																							| 38 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007.  10.1109/iccv.2017.324 | 
																													
																							| 39 | LI B Y, LIU Y, WANG X G. Gradient harmonized single-stage detector[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 8577-8584.  10.1609/aaai.v33i01.33018577 | 
																													
																							| 40 | LI Y, WANG T, KANG B Y, et al. Overcoming classifier imbalance for long-tail object detection with balanced group softmax[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10988-10997.  10.1109/cvpr42600.2020.01100 | 
																													
																							| 41 | YIN X, YU X, SOHN K, et al. Feature transfer learning for face recognition with under-represented data[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5697-5706.  10.1109/cvpr.2019.00585 | 
																													
																							| 42 | LIU Z W, MIAO Z Q, ZHAN X H, et al. Large-scale long-tailed recognition in an open world[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2532-2541.  10.1109/cvpr.2019.00264 | 
																													
																							| 43 | CHU P, BIAN X, LIU S P, et al. Feature space augmentation for long-tailed data[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12374. Cham: Springer, 2020: 694-710. | 
																													
																							| 44 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.  10.1109/tpami.2016.2577031 | 
																													
																							| 45 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.  10.1109/cvpr.2016.90 | 
																													
																							| 46 | HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988.  10.1109/iccv.2017.322 | 
																													
																							| 47 | TAN J R, LU X, ZHANG G, et al. Equalization loss v2: a new gradient balance approach for long-tailed object detection[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 1685-1694.  10.1109/cvpr46437.2021.00173 | 
																													
																							| 48 | HE Y, SONG K, MENG Q, et al. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69(4): 1493-1504.  10.1109/tim.2019.2915404 | 
																													
																							| 49 | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. (2017-01-30) [2022-07-13].. | 
																													
																							| 50 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37. | 
																													
																							| 51 | KUZNETSOVA A, MALEVA T, SOLOVIEV V. YOLOv5 versus YOLOv3 for apple detection[M]// KRAVETS A G, BOLSHAKOV A A, SHCHERBAKOV M. Cyber-Physical Systems: Modelling and Intelligent Control, SSDC 338. Cham: Springer, 2021: 349-358.  10.1007/978-3-030-66077-2_28 | 
																													
																							| 52 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10) [2022-07-24].. | 
																													
																							| 53 | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08) [2022-08-09]..  10.1109/cvpr.2017.690 | 
																													
																							| 54 | MENON A K, JAYASUMANA S, RAWAT A S, et al. Long-tail learning via logit adjustment[EB/OL]. (2021-07-09) [2022-05-22].. | 
																													
																							| 55 | TAN J R, WANG C B, LI B Y, et al. Equalization loss for long-tailed object recognition[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11659-11668.  10.1109/cvpr42600.2020.01168 |