[1]MIKOLAJCZYK K, SCHMID C. A performance evaluation of local descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
[2]CORTES C, VAPNIK V. Support-vector networks [J]. Machine Learning, 1995, 20(3): 273-297.
[3]FOODY G M, MATHUR A. A relative evaluation of multiclass image classification by support vector machines [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(6): 1335-1343.
[4]BARCZAK A L C, JOHNSON M J, MESSOM C H. Empirical evaluation of a new structure for AdaBoost[C]// Proceedings of the 2008 ACM symposium on Applied computing. New York: ACM Press, 2008: 1764-1765.
[5]DEAN J, GHEMAWAT S. MapReduce: Simplified data processing on large clusters [C]// Proceedings of the 2004 OSDI. Berkeley: USENIX Association, 2004: 137-150.
[6]OLSHAUSEN B A, FIELD D J. Sparse coding with and overcomplete basis set: a strategy employed by V1? [J]. Vision Research, 1997,37(23):3311-3325.
[7]BREIMAN L. Random forests [J]. Machine Learning, 2001, 45(1): 5-32.
[8]WHITE T. Hadoop: the definitive guide [M]. 3rd ed. Sebastopol: O'Reilly Media, 2012.
[9]LOWE D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[10]LEE H, BATTLE A, RAINA R, NG A Y. Efficient sparse coding algorithms [C]// Proceedings of the 2006 Advances in Neural Information Processing System. Cambridge: MIT Press, 2007: 801-808.
[11]YANG J, YU K, GONG Y, et al. Linear spatial pyramid matching using sparse coding for image classification [C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2009:1794-1801.
[12]MAIRAL J, BACH F, PONCE J, et al. Online learning for matrix factorization and sparse coding [J]. Journal of Machine Learning Research, 2010, 11(1): 19-60.
[13]EFRON B, HASTIE T, JOHNSTONE I, et al. Least angle regression[J]. Annals of Statistics, 2004, 32(2): 407-409.
[14]CARUANA R, NICULESCU-MIZIL A. An empirical comparison of supervised learning algorithms [C]// Proceedings of the 23rd International Conference on Machine Learning. New York: ACM Press, 2006:161-168.
[15]LI F, ANDREETTO M, RANZATO M A. The caltech-101 object categories [EB/OL]. [2013-05-11].http://www.vision.caltech.edu/feifeili/Datasets.htm.
[16]LI F, FERGUS R, PERONA P. Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories [J]. Computer Vision and Image Understanding, 2007, 106(1): 59-70. |