| [1] | TALAAT F M, ZAINELDIN H. An improved fire detection approach based on YOLO-v8 for smart cities[J]. Neural Computing and Applications, 2023, 35(28): 20939-20954. | 
																													
																							| [2] | LI C, LI G, SONG Y, et al. Fast forest fire detection and segmentation application for UAV-assisted mobile edge computing system[J]. IEEE Internet of Things Journal, 2024, 11(16): 26690-26699. | 
																													
																							| [3] | DIWAN T, ANIRUDH G, TEMBHURNE J V. Object detection using YOLO: challenges, architectural successors, datasets and applications[J]. Multimedia Tools and Applications, 2023, 82(6): 9243-9275. | 
																													
																							| [4] | AMIT Y, FELZENSZWALB P, GIRSHICK R. Object detection[M]// IKEUCHI K. Computer vision: a reference guide, 2nd ed. Cham: Springer, 2021: 875-883. | 
																													
																							| [5] | ROH J, KIM Y, KONG M. Fire image classification based on convolutional neural network for smart fire detection[J]. International Journal of Fire Science and Engineering, 2022, 36(3): 51-61. | 
																													
																							| [6] | MAJID S, ALENEZI F, MASOOD S, et al. Attention based CNN model for fire detection and localization in real-world images[J]. Expert Systems with Applications, 2022, 189: No.116114. | 
																													
																							| [7] | 陈佳慧,王晓虹. 改进YOLOv5的无人机航拍图像密集小目标检测算法[J]. 计算机工程与应用, 2024, 60(3):100-108. | 
																													
																							|  | CHEN J H, WANG X H. Dense small object detection algorithm based on improved YOLOv5 in UAV aerial images[J]. Computer Engineering and Applications, 2024, 60(3): 100-108. | 
																													
																							| [8] | 李军,刘念,张世义. 基于YOLOv5的桥梁裂纹检测方法研究[J]. 计算机科学, 2024, 51(11A): No.231200063. | 
																													
																							|  | LI J, LIU N, ZHANG S Y. Study on detection method of bridge crack based on YOLOv5[J]. Computer Science, 2024, 51(11A): No.231200063. | 
																													
																							| [9] | YAR H, KHAN Z A, ULLAH F U M, et al. A modified YOLOv5 architecture for efficient fire detection in smart cities[J]. Expert Systems with Applications, 2023, 231: No.120465. | 
																													
																							| [10] | TARVAINEN A, VALPOLA H. Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 1195-1204. | 
																													
																							| [11] | LIU Y C, MA C Y, KIRA Z. Unbiased Teacher for semi-supervised object detection[EB/OL]. [2024-12-05]. . | 
																													
																							| [12] | LIU Y C, MA C Y, KIRA Z. Unbiased Teacher v2: semi-supervised object detection for anchor-free and anchor-based detectors[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 9809-9818. | 
																													
																							| [13] | LIN Q, LI Z, ZENG K, et al. FireMatch: a semi-supervised video fire detection network based on consistency and distribution alignment[J]. Expert Systems with Applications, 2024, 248: No.123409. | 
																													
																							| [14] | SUN G, WEN Y, LI Y. Instance segmentation using semi-supervised learning for fire recognition[J]. Heliyon, 2022, 8(12): No.e12375. | 
																													
																							| [15] | WANG X, ZHANG R, KONG T, et al. SOLOv2: dynamic and fast instance segmentation[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 17721-17732. | 
																													
																							| [16] | WANG C, GRAU A, GUERRA E, et al. Semi-supervised wildfire smoke detection based on smoke-aware consistency[J]. Frontiers in Plant Science, 2022, 13: No.980425. | 
																													
																							| [17] | ZHANG B, WANG Y, HOU W, et al. FlexMatch: boosting semi-supervised learning with curriculum pseudo labeling[C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2021: 18408-18419. | 
																													
																							| [18] | WU S, ZHANG X, LIU R, et al. A dataset for fire and smoke object detection[J]. Multimedia Tools and Applications, 2023, 82(5): 6707-6726. | 
																													
																							| [19] | CHEN B, CHEN W, YANG S, et al. Label matching semi-supervised object detection[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 14361-14370. | 
																													
																							| [20] | SOHN K, ZHANG Z, LI C L, et al. A simple semi-supervised learning framework for object detection[EB/OL]. [2024-12-05]. . | 
																													
																							| [21] | XU M, ZHANG Z, HU H, et al. End-to-end semi-supervised object detection with soft teacher[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 3040-3049. |