Journal of Computer Applications ›› 2014, Vol. 34 ›› Issue (9): 2691-2696.DOI: 10.11772/j.issn.1001-9081.2014.09.2691
Previous Articles Next Articles
HE Feiyue,LI Jiatian,XU Heng,ZHANG Lan,XU Yanzhu,WANG Hongmei
Received:
2014-03-17
Revised:
2014-05-21
Online:
2014-09-30
Published:
2014-09-01
Contact:
HE Feiyue
贺飞越,李佳田,徐珩,张蓝,徐燕竹,王红梅
通讯作者:
贺飞越
作者简介:
基金资助:
国家自然科学基金资助项目
CLC Number:
HE Feiyue LI Jiatian XU Heng ZHANG Lan XU Yanzhu WANG Hongmei. Quasi-periodicity background algorithm for restraining swing objects[J]. Journal of Computer Applications, 2014, 34(9): 2691-2696.
贺飞越 李佳田 徐珩 张蓝 徐燕竹 王红梅. 晃动目标抑制的拟周期背景算法[J]. 计算机应用, 2014, 34(9): 2691-2696.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2014.09.2691
[1]DAI K, LI G, TU D, et al.Prospects and current studies on background subtraction techniques for moving objects detection from surveillance video [J]. Journal of Image and Graphics, 2006, 11(7): 919-927. (代科学,李国辉,涂丹,等.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927.)
[2]LI L, HUANG W, GU I Y H, et al.Foreground object detection from videos containing complex background [C]// MULTIMEDIA '03: Proceedings of the eleventh ACM International Conference on Multimedia. New York: ACM, 2003: 2-10.
[3]STAUFFER C, GRIMSON W E L. Adaptive background mixture models for real-time tracking [C]// Proceedings of the 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington,DC:IEEE Computer Society,1999,2:246-252.
[4]CHANG X, ZHANG W, DONG W. Mixture of Gaussian background modeling method based on multi-category visual features [J]. Journal of Image and Graphics, 2011, 16(5): 829-834. (常晓夫,张文生,董维山.基于多种类视觉特征的混合高斯背景模型[J].中国图象图形学报,2011,16(5):829-834.)
[5]LEE D-S. Effective Gaussian mixture learning for video background subtraction [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 827-832.
[6]ZIVKOVIC Z. Improved adaptive Gaussian mixture model for background subtraction [C]// ICPR 2004: Proceedings of the 17th International Conference on Pattern Recognition. Piscataway: IEEE, 2004, 2: 28-31.
〖HJ1.3mm〗[7]ZIVKOVIC Z, van der HEIJDEN F. Efficient adaptive density estimation per image pixel for the task of background subtraction [J]. Pattern Recognition Letters, 2006, 27(7): 773-780.
[8]SUN S, QIN Y, MA X, et al.ViBe forground detection algorithm and its improvement with morphology post-processing for outdoor scene [J]. Computer Engineering and Applicstions, 2013, 49(10): 159-162. (孙水发,覃音诗,马先兵,等.室外视频前景检测中的形态学改进ViBe算法[J].计算机工程与应用,2013,49(10):159-162.)
[9]BARNICH O, van DROOGENBROECK M. ViBe: a powerful random technique to estimate the background in video sequences [C]// ICASSP 2009: Proceedings of the 2009 International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2009: 945-948.
[10]BARNICH O, van DROOGENBROECK M. ViBe: a universal background subtraction algorithm for video sequences [J]. IEEE Transactions on Image Processing, 2011, 20(6): 1709-1724.
[11]KIM K, CHALIDABHONGSE T H, HARWOOD D, et al.Background modeling and subtraction by codebook construction [C]// ICIP 2004: Proceedings of the 2004 International Conference on Image Processing. Piscataway: IEEE, 2004, 5: 3061-3064.
[12]KIM K, CHALIDABHONGSE T H, HARWOOD D, et al.Real-time foreground-background segmentation using codebook model [J]. Real-time Imaging, 2005, 11(3): 172-185.
[13]〖CM(26*2〗ILYAS A, SCUTURICI M, MIGUET S. Real time foreground-background segmentation using a modified codebook model [C]// AVSS 2009: Proceedings of the Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance. Piscataway: IEEE, 2009: 454-459.
[14]LI Y, CHEN F, XU W, et al.Gaussian-based codebook model for video background subtraction [C]// ICNC 2006: Proceedings of the Second International Conference on Advances in Natural Computation, LNCS 4222. Berlin: Springer-Verlag, 2006: 762-765.
[15]ZHANG Y, SONG S, ZHANG R, et al.Study on adaptive ability of Gaussian mixture background model [J]. Journal of Computer Applications, 2011, 31(3): 706-709. (张运楚,宋世军,张汝敏,等.高斯混合背景模型的适应能力研究[J].计算机应用,2011,31(3):706-709.)
[16]CAI J, WALKER R. Robust video stabilization algorithm using feature point selection and delta optical flow [J]. IET Computer Vision, 2009, 3(4): 176-188. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||