Journal of Computer Applications ›› 2015, Vol. 35 ›› Issue (9): 2486-2491.DOI: 10.11772/j.issn.1001-9081.2015.09.2486
Previous Articles Next Articles
ZHA Shanshan, WANG Yuanjun, NIE Shengdong
Received:
2015-04-23
Revised:
2015-06-02
Online:
2015-09-17
Published:
2015-09-10
查珊珊, 王远军, 聂生东
通讯作者:
王远军(1980-),男,山东日照人,副教授,博士,主要研究方向:生物医学工程、医学图像处理与分析,yjusst@126.com
作者简介:
查珊珊(1991-),女,安徽舒城人,硕士研究生,主要研究方向:医学图像配准;聂生东(1962-),男,山东泰安人,教授,博士,主要研究方向:医学图像处理与分析、核磁共振图像/信号处理与分析。
基金资助:
CLC Number:
ZHA Shanshan, WANG Yuanjun, NIE Shengdong. Development of medical image registration technology using GPU[J]. Journal of Computer Applications, 2015, 35(9): 2486-2491.
查珊珊, 王远军, 聂生东. 基于图形处理器加速的医学图像配准技术进展[J]. 计算机应用, 2015, 35(9): 2486-2491.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2015.09.2486
[1] HAJNAL J, HILL D, HAWKES D. Medical image registration [M]. New York: CRC Press, 2001:1. [2] MARKELJ P, TOMAZEVIC D, LIKAR B, et al. A review of 3D/2D registration methods for image-guided interventions [J]. Medical Image Analysis, 2012,16(3):642-661. [3] ROST R J, LICEAKANE B M, GINSBURG D, et al. OpenGL shading language [M]. London: Addison-Wesley Professional, 2009:1-34. [4] LUNA F. Introduction to 3D game programming with DirectX 11 [M]. Boston: Mercury Learning and Information, 2012:15-17. [5] EKLUND A, DUFORT P, FORSBERG D, et al. Medical image processing on the GPU-past, present and future [J]. Medical Image Analysis, 2013,17(8):1073-1094. [6] PATTERSON D A, HENNESSY J L. Computer organization and design: the hardware/software interface [M]. San Francisco: Morgan Kaufmann Publishers, 2008:A13-A16. [7] FLUCK O, VETTER C, WEIN W, et al. A survey of medical image registration on graphics hardware [J]. Computer Methods and Programs in Biomedicine, 2011,104(3):e45-e57. [8] SHAMS R, SADEGHI P, KENNEDY R A, et al. A survey of medical image registration on multicore and the GPU [J]. IEEE Signal Processing Magazine, 2010,27(2):50-60. [9] CRUM W, GRIFFIN L, HILL D, et al. Zen and the art of medical image registration: correspondence, homology, and quality [J]. NeuroImage, 2003,20(3):1425-1437. [10] LOURENCO L H, WEINGAERTNER D, TODT E. Efficient implementation of Canny edge detection filter for ITK using CUDA [C]//Proceedings of the 2012 13th Symposium on Computing Systems. Piscataway: IEEE, 2012:33-40. [11] QIN A, XU J, FENG Q, et al. Fast 3D rigid medical image registration based on GPU [J]. Application Research of Computers, 2010, 27(3): 1198-1200. (秦安, 徐建, 冯前进,等. 基于GPU的快速三维医学图像刚性配准技术[J]. 计算机应用研究, 2010, 27(3): 1198-1200.) [12] GREVE D N, FISCHL B. Accurate and robust brain image alignment using boundary-based registration [J]. NeuroImage, 2009,48(1):63-72. [13] WANG B, ZHU Z, MENG L. CUDA-based acceleration of three dimensional 3D medical images registration [J]. Journal of Chinese Computer Systems, 2013,34(11):2621-2625.(王蓓蕾,朱志良,孟琭.基于CUDA加速的三维医学图像配准[J].小型微型计算机系统,2013,34(11):2621-2625.) [14] BANERJEE J, KLINK C, PETERS E D, et al. Fast and robust 3D ultrasound registration-block and game theoretic matching [J]. Medical Image Analysis, 2015,20(1):173-183. [15] DEMIRCI S, BAUST M, KUTTER O, et al. Disocclusion-based 2D-3D registration for aortic interventions [J]. Computers in Biology and Medicine, 2013,43(4):312-322. [16] SPOERK J, GENDRIN C, WEBER C, et al. High-performance GPU-based rendering for real-time, rigid 2D/3D-image registration and motion prediction in radiation oncology [J]. Zeitschrift Fur Medizinische Physik, 2012,22(1):13-20. [17] MEMBARTH R, HANNIG F, TEICH J, et al. Frameworks for GPU accelerators: a comprehensive evaluation using 2D/3D image registration [C]//Proceedings of the 2011 IEEE 9th Symposium on Application Specific Processors. Piscataway: IEEE, 2011:78-81. [18] GALLEA R, ARDIZZONE E, PIRRONE R, et al. Three-dimensional fuzzy kernel regression framework for registration of medical volume data [J]. Pattern Recognition, 2013,46(11):3000-3016. [19] ZHANG Y, ZHOU P, REN Y, et al. GPU-accelerated large-size VHR images registration via coarse-to-fine matching [J]. Computers and Geosciences, 2014,66(5):54-65. [20] HUANG Y, LIU J, TU M, et al. Research on CUDA-based SIFT registration of SAR image [C]//Proceedings of the 2011 4th International Symposium on Parallel Architectures, Algorithms and Programming. Piscataway: IEEE, 2011:100-104. [21] RUECKERT D, SONODA L I, HAYES C, et al. Nonrigid registration using free-form deformations: application to breast MR images [J]. IEEE Transactions on Medical Imaging, 1999,18(8):712-721. [22] MODAT M, RIDGWAY G R, TAYLOR Z A, et al. Fast free-form deformation using graphics processing units [J]. Computer Methods and Programs in Biomedicine, 2010,98(3):278-284. [23] ANSORGE R E, SAWIAK S J, WILLIAMS G B. Exceptionally fast non-linear 3D image registration using GPUs [C]//Proceedings of the 2009 IEEE Nuclear Science Symposium Conference Record. Piscataway: IEEE, 2009:3207-3213. [24] GRUSLYS A, SAWIAK S, ANSORGE R. 3000 non-rigid medical image registrations overnight on a single PC [C]//Proceedings of the 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference. Piscataway: IEEE, 2011:3073-3080. [25] THIRION J P. Image matching as a diffusion process: an analogy with Maxwell's demons [J]. Medical Image Analysis, 1998,2(3):243-260. [26] SHARP G C, KANDASAMY N, FOLKERT H, et al. GPU-based streaming architectures for fast cone-beam CT image reconstruction and demons deformable registration [J]. Physics in Medicine and Biology, 2007,52(19):5771-5783. [27] COURTY N, HELLIER P. Accelerating 3D non-rigid registration using graphics hardware [J]. International Journal of Image and Graphics, 2008,8(1):1-18. [28] MUYAN-OZCELIK P, OWENS J D, XIA J, et al. Fast deformable registration on the GPU: a CUDA implementation of demons [C]//Proceedings of the 2008 International Conference on Computational Sciences and Its Applications. Piscataway: IEEE, 2008:223-233. [29] NOE K Ø, SENNEVILLE B D, ELSTRØM U V, et al. Acceleration and validation of optical flow based deformable registration for image-guided radiotherapy [J]. Acta Oncologica, 2008,47(7):1286-1293. [30] HUANG Y, TONG T, LIU W, et al. Accelerated diffeomorphic non-rigid image registration with CUDA based on demons algorithm [C]//Proceedings of the 2010 4th International Conference on Bioinformatics and Biomedical Engineering. Piscataway: IEEE, 2010:1-4. [31] JOLDES G R, WITTEK A, MILLER K. Real-time nonlinear finite element computations on GPU-application to neurosurgical simulation [J]. Computer Methods in Applied Mechanics and Engineering, 2010,199(47/48):3305-3314. [32] MOUSAZADEH H, MARAMI B, PATRICIU S, et al. GPU implementation of a deformable 3D image registration algorithm [C]//Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2011:4897-4900. [33] CAI Y, GUO X, ZHONG Z, et al. Dynamic meshing for deformable image registration [J]. Computer-Aided Design, 2015,58(1):141-150. [34] KNUTSSON H, ANDERSSON M. Morphons: segmentation using elastic canvas and paint on priors [C]//Proceedings of the 2005 International Conference on Image Processing. Piscataway: IEEE, 2005:1226-1229. [35] WRANGSJO A, PETTERSSON J, KNUTSSON H. Non-rigid registration using Morphons [C]//Proceedings of the 14th Scandinavian Conference. Piscataway: IEEE, 2005:501-510. [36] EKLUND A, ANDERSSON M, KNUTSSON H. Phase-based volume registration using CUDA [C]//Proceedings of the 2010 IEEE International Conference on Acoustics Speech and Signal Processing. Piscataway: IEEE, 2010:658-661. [37] FORSBERG D, EKLUND A, ANDERSSON M, et al. Phase-based non-rigid 3D image registration: from minutes to seconds using CUDA [EB/OL]. [2015-01-03]. http://www.researchgate.net/publication/266057340_Phase-Based_Non-Rigid_3D_Image_Registration_From_Minutes_to_Seconds_Using_CUDA. [38] STUDHOLME C, HILL D, HAWKES D J. An overlap invariant entropy measure of 3D medical image alignment [J]. Pattern Recognition, 1999, 32(1): 71-86. [39] SHAMS R, BARNES N. Speeding up mutual information computation using NVIDIA CUDA hardware [C]//Proceedings of the 9th Biennial Conference of the Australian Pattern Recognition Society on Digital Image Computing Techniques and Applications. Washington, DC: IEEE Computer Society, 2007:555-560. [40] CHEN S, QIN J, XIE Y, et al. CUDA-based acceleration and algorithm refinement for volume image registration [C]//Proceedings of the 2009 International Conference on Future BioMedical Information Engineering. Piscataway: IEEE, 2009:544-547. [41] SHAMS R, SADEGHI P, KENNEDY R, et al. Parallel computation of mutual information on the GPU with application to real-time registration of 3D medical images [J]. Computer Methods and Program in Biomedicine, 2010,99(2):133-146. [42] CHENG W, LU C. Acceleration of medical image registration using graphics process units in computing normalized mutual information [C]//Proceedings of the 2009 5th International Conference on Image and Graphics. Piscataway: IEEE, 2009:814-818. [43] YANG J, HAN F, FEN C, et al. An accelerative method for multimodality medical image registration based on CUDA [C]//Proceedings of the 2011 4th International Congress on Image and Signal Processing. Piscataway: IEEE, 2011:1817-1821. [44] IKEDA K, INO F, HAGIHARA K. Efficient acceleration of mutual information computation for nonrigid registration using CUDA [J]. IEEE Journal of Biomedical and Health Informatics, 2014,18(3):956-968. [45] FUERST B, WEIN W, MVLLER M, et al. Automatic ultrasound-MRI registration for neurosurgery using the 2D and 3D LC2 metric [J]. Medical Image Analysis, 2014,18(8):1312-1319. [46] RIVEST-HENAULT D, DOWSON N, GREER B P, et al. Robust inverse-consistent affine CT-MR registration in MRI-assisted and MRI-alone prostate radiation therapy [J]. Medical Image Analysis, 2015,23(1):56-69. [47] JALLOUL M, BAYDOUN M, AL-ALAOUI M A. Gauss-Newton image registration with CUDA [C]//Proceedings of the 2011 18th IEEE International Conference on Electronics, Circuits and Systems. Piscataway: IEEE, 2011:305-309. [48] MICHALEK J, CAPEK M, JANACE J, et al. Matching of irreversibly deformed images in microscopy based on piecewise monotone subgradient optimization using parallel processing [C]//Proceedings of the 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference. Piscataway: IEEE, 2012:3956-3963. [49] FEI Y, RONG G D, WANG B, et al. Parallel L-BFGS-B algorithm on GPU [J]. Computers and Graphics, 2014,40:1-9. |
[1] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[2] | Rui ZHANG, Pengyun ZHANG, Meirong GAO. Self-optimized dual-modal multi-channel non-deep vestibular schwannoma recognition model [J]. Journal of Computer Applications, 2024, 44(9): 2975-2982. |
[3] | Guijin HAN, Xinyuan ZHANG, Wentao ZHANG, Ya HUANG. Self-supervised image registration algorithm based on multi-feature fusion [J]. Journal of Computer Applications, 2024, 44(5): 1597-1604. |
[4] | Tao JIANG, Zhenyu LIANG, Ran CHENG, Yaochu JIN. GPU-accelerated evolutionary optimization of multi-objective flow shop scheduling problems [J]. Journal of Computer Applications, 2024, 44(5): 1364-1371. |
[5] | Zhiliang SHI, Shiqi LIAO, Zibo GAN, Shaobo ZHU. Automatic preoperative planning algorithm for three-dimensional wedge osteotomy of radius [J]. Journal of Computer Applications, 2024, 44(2): 588-594. |
[6] | Xin ZHAO, Xinjie LI, Jian XU, Buyun LIU, Xiang BI. Parallel medical image registration model based on convolutional neural network and Transformer [J]. Journal of Computer Applications, 2024, 44(12): 3915-3921. |
[7] | Yunfei SHEN, Fei SHEN, Fang LI, Jun ZHANG. Deep neural network model acceleration method based on tensor virtual machine [J]. Journal of Computer Applications, 2023, 43(9): 2836-2844. |
[8] | Jinhui LAI, Zichen XU, Yicheng TU, Guolong TAN. OmegaDB: concurrent computing framework of relational operators for heterogeneous architecture [J]. Journal of Computer Applications, 2023, 43(7): 2017-2025. |
[9] | Shaokang XU, Zhancheng ZHANG, Haonan YAO, Zhiwei ZOU, Baocheng ZHANG. 2D/3D spine medical image real-time registration method based on pose encoder [J]. Journal of Computer Applications, 2023, 43(2): 589-594. |
[10] | Qidi XU, Zhenghong LIU, Lin ZHENG. Low density parity check code decoding acceleration technology based on GPU [J]. Journal of Computer Applications, 2022, 42(12): 3841-3846. |
[11] | Yang WANG, Shijie JIANG, Yucong CAO, Chuanwen LI. Parallel pivoted subgraph matching with multiple coding trees on GPU [J]. Journal of Computer Applications, 2022, 42(1): 132-139. |
[12] | SHI Yangxiao, ZHANG Jun, CHEN Peng, WANG Bing. Classification of steel surface defects based on lightweight network [J]. Journal of Computer Applications, 2021, 41(6): 1836-1841. |
[13] | XIE Wenbo, WEI Yongzhuang, LIU Zhenghong. Parallel implementation and analysis of SKINNY encryption algorithm using CUDA [J]. Journal of Computer Applications, 2021, 41(4): 1136-1141. |
[14] | SUN Qichang, MAI Yongfeng, CHEN Xiaojun. Fast calibration algorithm in surgical navigation system based on augmented reality [J]. Journal of Computer Applications, 2021, 41(3): 833-838. |
[15] | GUO Wenxu, SU Yuanqi, LIU Yuehu. YOLOv3 compression and acceleration based on ZYNQ platform [J]. Journal of Computer Applications, 2021, 41(3): 669-676. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||