[1] 马旗, 朱斌, 张宏伟, 等. 基于优化YOLOv3的低空无人机检测识别方法[J]. 激光与光电子学进展,2019,56(20):No. 201006. (MA Q,ZHU B,ZHANG H W, et al. Low-altitude UAV detection and recognition method based on optimized YOLOv3[J]. Laser and Optoelectronics Progress,2019,56(20):No. 201006.) [2] 李云鹏, 侯凌燕, 王超. 基于YOLOv3的自动驾驶中运动目标检测[J]. 计算机工程与设计,2019,40(4):1139-1144.(LI Y P, HOU L Y,WANG C. Moving objects detection in automatic driving based on YOLOv3[J]. Computer Engineering and Design,2019, 40(4):1139-1144.) [3] GIRSHICK R,DONAHUE J,DARRELL T,et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(1):142-158. [4] REN S,HE K,GIRSHICK R,et al. Faster R-CNN:towards realtime object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017, 39(6):1137-1149. [5] LIU W,ANGUELOV D,ERHAN D,et al. SSD:single shot multibox detector[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9905. Cham:Springer, 2016:21-37. [6] REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:779-788. [7] YURTSEVER E,LAMBERT J,CARBALLO A,et al. A survey of autonomous driving:common practices and emerging technologies[J]. IEEE Access,2020,8:58443-58469. [8] ZHANG X,ZHOU X,LIN M,et al. ShuffleNet:an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:6848-6856. [9] HOWARD A G,ZHU M,CHEN B,et al. MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2020-06-02]. https://arxiv.org/pdf/1704.04861.pdf. [10] SANDLER M,HOWARD A,ZHU M,et al. MobileNetV2:inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:4510-4520. [11] HOWARD A,SANDLER M,CHEN B,et al. Searching for MobileNetV3[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE, 2019:1314-1324. [12] 邹月娴, 余嘉胜, 陈泽晗, 等. 图像分类卷积神经网络的特征选择模型压缩方法[J]. 控制理论与应用,2017,34(6):746-752. (ZOU Y X,YU J S,CHEN Z H,et al. Convolutional neural networks model compression based on feature selection for image classification[J]. Control Theory and Applications,2017,34(6):746-752.) [13] HAN S,POOL J,TRAN J,et al. Learning both weights and connections for efficient neural network[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2015:1135-1143. [14] LI H,KADAV A,DURDANOVIC I,et al. Pruning filters for efficient ConvNets[EB/OL].[2020-06-02]. https://arxiv.org/pdf/1608.08710.pdf. [15] HE Y,ZHANG X,SUN J. Channel pruning for accelerating very deep neural networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:1398-1406. [16] LIU Z,LI J,SHEN Z,et al. Learning efficient convolutional networks through network slimming[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:2755-2763. [17] LIU Z,SUN M,ZHOU T,et al. Rethinking the value of network pruning[EB/OL].[2020-06-02]. https://arxiv.org/pdf/1810.05270.pdf. [18] HAN S,MAO H,DALLY W J. Deep compression:compressing deep neural networks with pruning,trained quantization,and Huffman coding[EB/OL].[2020-06-02]. https://arxiv.org/pdf/1510.00149.pdf. [19] COURBARIAUX M,HUBARA I,SOUDRY D,et al. Binarized neural networks:training deep neural networks with weights and activations constrained to +1 or -1[EB/OL].[2020-09-19]. https://arxiv.org/pdf/1602.02830.pdf. [20] RASTEGARI M,ORDONEZ V,REDMON J,et al. XNOR-Net:ImageNet classification using binary convolutional neural networks[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9908. Cham:Springer,2016:525-542. [21] JACOB B,KLIGYS S,CHEN B,et al. Quantization and training of neural networks for efficient integer-arithmetic-only inference[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:2704-2713. [22] WU S,LI G,CHEN F,et al. Training and inference with integers in deep neural networks[EB/OL].[2020-06-02]. https://arxiv.org/pdf/1802.04680.pdf. [23] SAU B B, BALASUBRAMANIAN V N. Deep model compression:distilling knowledge from noisy teachers[EB/OL].[2020-06-02]. https://arxiv.org/pdf/1610.09650.pdf. [24] XU Z,HSU Y C,HUANG J. Training shallow and thin networks for acceleration via knowledge distillation with conditional adversarial networks[EB/OL].[2020-06-02]. https://arxiv.org/pdf/1709.00513.pdf. [25] CROWLEY E J,GRAY G,STORKEY A. Moonshine:distilling with cheap convolutions[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2018:2893-2903. [26] JIA Y, SHELHAMER E, DONAHUE J, et al. Caffe:convolutional architecture for fast feature embedding[C]//Proceedings of the 22nd ACM International Conference on Multimedia. New York:ACM,2014:675-678. [27] 盛荣菊, 马建伟. 人工神经网络FPGA硬件实现的研究进展[J]. 电气自动化,2009,31(5):53-54,67.(SHENG R J,MA J W. Research progress of FPGA hardware implementation of artificial neural network[J]. Electrical Automation,2009,31(5):53-54,67.) [28] 余子健, 马德, 严晓浪, 等. 基于FPGA的卷积神经网络加速器[J]. 计算机工程,2017,43(1):109-114,119.(YU Z J,MA D,YAN X L,et al. FPGA-based accelerator for convolutional neural network[J]. Computer Engineering,2017,43(1):109-114,119.) [29] GSCHWEND D. ZynqNet:an FPGA-accelerated embedded convolutional neural network[EB/OL].[2020-06-02]. https://arxiv.org/pdf/2005.06892.pdf. [30] VASILACHE N, JOHNSON J, MATHIEU M, et al. Fast convolutional nets with fbfft:a GPU performance evaluation[EB/OL].[2020-09-19]. https://arxiv.org/pdf/1412.7580.pdf. [31] LAVIN A,GRAY S. Fast algorithms for convolutional neural networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:4013-4021. [32] LIU X, POOL J, HAN S, et al. Efficient sparse-Winograd convolutional neural networks[EB/OL].[2020-06-02]. https://arxiv.org/pdf/1802.06367.pdf. [33] IOFFE S,SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning. New York:JMLR. org,2015:448-456. [34] REDMON J, FARHADI A. YOLOv3:an incremental improvement[EB/OL].[2020-06-02]. https://arxiv.org/pdf/1804.02767.pdf. [35] CHENG Y,WANG D,ZHOU P,et al. A survey of model compression and acceleration for deep neural networks[EB/OL].[2020-06-02]. https://arxiv.org/pdf/1710.09282.pdf. [36] MIGACZ S. 8-bit inference with TensorRT[EB/OL].[2020-04-20]. http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf. [37] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [38] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:1-9. [39] XILINX. Vivado HLS optimize methodology guide(UG1270)[EB/OL].[2020-04-20]. https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug1270-vivado-hls-optmethodology-guide.pdf. [40] HE K,ZHANG X,REN S,et al. Delving deep into rectifiers:surpassing human-level performance on ImageNet classification[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE,2015:1026-1034. [41] GEIGER A,LENZ P,STILLER C,et al. Vision meets robotics:the KITTI dataset[J]. The International Journal of Robotics Research,2013,32(11):1231-1237. [42] WANG T,WANG C,ZHOU X,et al. A survey of FPGA based deep learning accelerators:challenges and opportunities[EB/OL].[2020-06-02]. https://arxiv.org/pdf/1901.04988v1.pdf. [43] MA Y,CAO Y,VRUDHULA S,et al. Automatic compilation of diverse CNNs onto high-performance FPGA accelerators[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2020,39(2):424-437. |