[1] YANG F, WANG S, LI J, et al. An overview of Internet of vehicles[J]. China Communications, 2014, 11(10):1-15. [2] CHEN Z, WANG X. Effects of network structure and routing strategy on network capacity[J]. Physical Review E, 2006, 73(3):036107. [3] ROS F J, MARTINEZ J A, RUIZ P M. A survey on modeling and simulation of vehicular networks:communications, mobility, and tools[J]. Computer Communications, 2014, 43(5):1-15. [4] HO W H, LEUNG K K, POLAK J W. Stochastic model and connectivity dynamics for VANETs in signalized road systems[J]. IEEE/ACM Transactions on Networking, 2011, 19(1):195-208. [5] THUAN D H, CUU H V, DO H N. VANET modelling and statistical properties of connectivity in urban environment[J]. REV Journal on Electronics and Communications, 2013, 3(1/2):50-58. [6] NABOULSI D, FIORE M. On the instantaneous topology of a large-scale urban vehicular network:the cologne case[C]//MobiHoc:Proceedings of the 14th ACM International Symposium on Mobile Ad Hoc Networking and Computing. New York:ACM, 2013:167-176. [7] GRZYBEK A, DANOY G, SEREDYNSKI M, et al. Evaluation of dynamic communities in large-scale vehicular networks[C]//DIVANet:Proceedings of the 3rd ACM International Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications. New York:ACM, 2013:93-100. [8] PALLIS G, KATSAROS D, DIKAIAKOS M D, et al. On the structure and evolution of vehicular networks[C]//MASCOTS:Proceedings of the 17th IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems. Piscataway:IEEE, 2009:502-511. [9] CONCEICO H, FERREIRA M, BARROS J. On the urban connectivity of vehicular sensor networks[C]//DCOSS:Proceedings of the 4th IEEE International Conference on Distributed Computing in Sensor Systems, LNCS 5067. Berlin:Springer, 2008:112-125. [10] ZHANG L, CHEN H, LI C, et al. Modeling the vehicular Ad Hoc networks based on topology characteristics in urban scenario[J]. Journal of software, 2013, 24(1):51-61. (张丽丽,陈浩,李臣明,等.城市环境下基于拓扑特性的车辆自组网建模[J].软件学报,2013,24(1):51-61.) [11] ZHANG H, LI J, LYU Y. Structure performance analysis of vehicular Ad Hoc networks based on complex network theory[J]. Computer Modelling and New Technologies, 2014, 18(2):46-51. [12] COSTA L D F, RODRIGUES F A, TRAVIESO G, et al. Characterization of complex networks:a survey of measurements[J]. Advances in Physics, 2007, 56(1):167-242. [13] TONG C, NIU J, QU G, et al. Complex networks properties analysis for mobile Ad Hoc networks[J]. IET Communications, 2012, 6(4):370-380. [14] WANG Y, MA Y, WANG Y, et al. Evolving network model with local-area preference for mobile Ad Hoc network[J]. China Communications, 2013, 10(5):146-155. [15] SHAREF B T, ALSAQOUR R A, ISMAIL M. Vehicular communication Ad Hoc routing protocols:a survey[J]. Journal of Network and Computer Applications, 2014, 40(2):363-396. [16] RAVITEJA B L, ANNAPPA B, TAHILIANI M P. CAMP:congestion adaptive multipath routing protocol for VANETs[C]//ADCONS'11:Proceedings of the 2011 International Conference on Advanced Computing, Networking and Security, LNCS 7135. Berlin:Springer, 2012:318-327. [17] JAYAVEL J, VENKATESAN R, VINOTH D. Efficient multipath routing protocol for VANET using path restoration[J]. International Journal of Engineering and Technology, 2013, 5(5):3839-3845. [18] CHEN Z, GUAN L, WANG X, et al. Ad-Hoc on-demand multipath distance vector routing with backup route update mechanism[C]//HPCC & ICESS:Proceedings of the 14th IEEE International Conference on High Performance Computing and Communications and the 9th IEEE International Conference on Embedded Software and Systems. Piscataway:IEEE, 2012:908-913. [19] CHEN Y, XIANG Z, JIAN W, et al. A cross-layer AOMDV routing protocol for V2V communication in urban VANET[C]//Proceedings of the 5th International Conference on Mobile Ad-Hoc and Sensor Networks. Piscataway:IEEE, 2009:353-359. [20] CHEN Y, XIANG Z, JIAN W, et al. An adaptive cross-layer multi-path routing protocol for urban VANET[C]//Proceedings of the 2010 IEEE International Conference on Automation and Logistics. Piscataway:IEEE, 2010:603-608. [21] ZHAO L, LAI Y-C, PARK K, et al. Onset of traffic congestion in complex networks[J]. Physical Review E, 2005, 71(2):026125. [22] ZHAO L, CUPERTINO T H, PARK K, et al. Optimal structure of complex networks for minimizing traffic congestion[J]. Chaos, 2007, 17(4):043103. [23] GUO D, LIANG M, WANG Z, et al. Network capacity based on complex network theory[J]. Journal of Beijing Jiaotong University, 2011, 35(3):123-127, 131. (郭东超,梁满贵,王哲,等.基于复杂网络理论的网络容量估算[J].北京交通大学学报,2011,35(3):123-127,131.) [24] LI S, LOU L, CHEN R, et al. A pervasive optimized algorithm for complex network routing strategy[J]. Acta Physica Sinica, 2014, 63(2):028901. (李世宝,娄琳琳,陈瑞祥,等.一种复杂网络路由策略的普适优化算法[J].物理学报,2014,63(2):028901.) [25] YANG H, WANG W, XIE Y, et al. Transportation dynamics on networks of mobile Agents[J]. Physical Review E, 2011, 83(1):016102. [26] BRUST M R, TURGUT D, RIBEIRO C H C, et al. Is the clustering coefficient a measure for fault tolerance in wireless sensor networks?[C]//Proceedings of the 2012 IEEE International Conference on Communications. Piscataway:IEEE, 2012:183-187. [27] CHEN S, HUANG W, CATTANI C, et al. Traffic dynamics on complex networks:a survey[J]. Mathematical Problems in Engineering, 2012, 2012(1):256-267. [28] SCHLEICH J, DANOY G, DORRONSORO B, et al. An overlay approach for optimising small-world properties in VANETs[C]//Proceedings of the 16th European Conference on Applications of Evolutionary Computation, LNCS 7835. Berlin:Springer, 2013:32-41. [29] LU N, ZHANG N, CHENG N, et al. Vehicles meet infrastructure:towards capacity-cost tradeoffs for vehicular access networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(3):1266-1277. [30] NEKOUI M, PISHRO-NIK H. Throughput scaling laws for vehicular Ad Hoc networks[J]. IEEE Transactions on Wireless Communications, 2012, 11(8):2895-2905. [31] KAI C H, LONG J, LING X, et al. Upper bound of network capacity and a static optimal packet routing strategy[J]. Physica A:Statistical Mechanics and its Applications, 2014, 401(5):174-181. [32] EIZA M H, NI Q. An evolving graph-based reliable routing scheme for VANETs[J]. IEEE Transactions on Vehicular Technology, 2013, 62(4):1493-1504. [33] MAO G Q, ANDERSON B D O. Graph theoretic models and tools for the analysis of dynamic wireless multihop networks[C]//WCNC:Proceedings of the 2009 IEEE Wireless Communications and Networking Conference. Piscataway:IEEE, 2009:1-6. [34] GUAN X, ZHANG X, ZHU Y, et al. An efficient routing strategy on spatial scale-free networks[J]. International Journal of Modern Physics C, 2014, 25(7):809-820. [35] ZHANG H, LI J. Topological characteristics and control approach for VANET[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(2):81-87. (张宏,李杰.车载自组织网络拓扑特性及控制[J].交通运输系统工程与信息,2015,15(2):81-87.) [36] SHIVSHANKAR S, JAMALIPOUR A. An evolutionary game theory-based approach to cooperation in VANETs under different network conditions[J]. IEEE Transactions on Vehicular Technology, 2015, 64(5):2015-2022. [37] JUNG E S, VAIDYA N H. A power control MAC protocol for Ad Hoc networks[J]. Wireless Networks, 2005, 11(1/2):55-66. [38] LU N, SHEN X. Scaling laws for throughput capacity and delay in wireless networks-a survey[J]. IEEE Communications Surveys and Tutorials, 2014, 16(2):642-657. |