Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (11): 3386-3395.DOI: 10.11772/j.issn.1001-9081.2023111596
• Data science and technology • Previous Articles Next Articles
Zhongyu WANG1, Xiaodong QIAN2()
Received:
2023-11-22
Revised:
2024-03-10
Accepted:
2024-03-14
Online:
2024-03-22
Published:
2024-11-10
Contact:
Xiaodong QIAN
About author:
WANG Zhongyu, born in 1998, M. S. candidate. His research interests include supply chain networks, complex networks.
Supported by:
通讯作者:
钱晓东
作者简介:
王中钰(1998—),男,河南新乡人,硕士研究生,CCF会员,主要研究方向:供应链网络、复杂网络
基金资助:
CLC Number:
Zhongyu WANG, Xiaodong QIAN. Optimization of edge connection rules for supply chain network based on improved expectation maximization algorithm[J]. Journal of Computer Applications, 2024, 44(11): 3386-3395.
王中钰, 钱晓东. 基于改进期望最大化算法的供应链网络边连接规则优化[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3386-3395.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023111596
规则 | 节点数 | 集聚系数 | 平均最短路径长度 |
---|---|---|---|
择优连接 | 10 | 0.501 4 | 1.555 6 |
20 | 0.361 3 | 1.775 1 | |
30 | 0.332 7 | 1.886 8 | |
40 | 0.190 7 | 2.009 7 | |
50 | 0.182 3 | 2.246 7 | |
剩余边连接规则 | 10 | 0.545 6 | 1.503 6 |
20 | 0.382 7 | 1.704 4 | |
30 | 0.352 3 | 1.823 6 | |
40 | 0.233 5 | 1.912 3 | |
50 | 0.201 3 | 2.036 7 |
Tab. 1 Comparison of network parameters between preferential connection and residual edge connection rules
规则 | 节点数 | 集聚系数 | 平均最短路径长度 |
---|---|---|---|
择优连接 | 10 | 0.501 4 | 1.555 6 |
20 | 0.361 3 | 1.775 1 | |
30 | 0.332 7 | 1.886 8 | |
40 | 0.190 7 | 2.009 7 | |
50 | 0.182 3 | 2.246 7 | |
剩余边连接规则 | 10 | 0.545 6 | 1.503 6 |
20 | 0.382 7 | 1.704 4 | |
30 | 0.352 3 | 1.823 6 | |
40 | 0.233 5 | 1.912 3 | |
50 | 0.201 3 | 2.036 7 |
网络 规模 | 本文算法 | 遗传算法 | 粒子群算法 | |||
---|---|---|---|---|---|---|
边数 | 幂律指数 | 边数 | 幂律指数 | 边数 | 幂律指数 | |
50 | 2 | 2.461 | 2 | 2.352 | 2 | 2.517 |
100 | 3 | 2.527 | 2 | 2.627 | 4 | 2.644 |
200 | 4 | 2.812 | 3 | 2.967 | 6 | 4.513 |
500 | 4 | 2.816 | 4 | 3.558 | 4 | 5.772 |
1 000 | 4 | 3.153 | 7 | 6.473 | 10 | 8.591 |
Tab.2 Comparison of three optimization algorithms
网络 规模 | 本文算法 | 遗传算法 | 粒子群算法 | |||
---|---|---|---|---|---|---|
边数 | 幂律指数 | 边数 | 幂律指数 | 边数 | 幂律指数 | |
50 | 2 | 2.461 | 2 | 2.352 | 2 | 2.517 |
100 | 3 | 2.527 | 2 | 2.627 | 4 | 2.644 |
200 | 4 | 2.812 | 3 | 2.967 | 6 | 4.513 |
500 | 4 | 2.816 | 4 | 3.558 | 4 | 5.772 |
1 000 | 4 | 3.153 | 7 | 6.473 | 10 | 8.591 |
模型 | 网络 规模 | 平均度 | 平均最短 路径长度 | 平均集聚 系数 | 幂律分布 指数 |
---|---|---|---|---|---|
新能源汽车 网络 | 236 | 7.762 | 2.893 | 0.036 | 3.014 |
本文网络 模型 | 250 | 7.832 | 2.921 | 0.043 | 2.831 |
BA网络 模型 | 250 | 7.917 | 2.746 | 0.052 | 3.503 |
Tab. 3 Comparison of parameters of supply chain network models of new energy vehicles
模型 | 网络 规模 | 平均度 | 平均最短 路径长度 | 平均集聚 系数 | 幂律分布 指数 |
---|---|---|---|---|---|
新能源汽车 网络 | 236 | 7.762 | 2.893 | 0.036 | 3.014 |
本文网络 模型 | 250 | 7.832 | 2.921 | 0.043 | 2.831 |
BA网络 模型 | 250 | 7.917 | 2.746 | 0.052 | 3.503 |
1 | BARABÁSI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512. |
2 | PATHAK S D, DAY J M, NAIR A, et al. Complexity and adaptivity in supply networks: building supply network theory using a complex adaptive systems perspective[J]. Decision Sciences, 2007, 38(4): 547-580. |
3 | ORENSTEIN P. The changing landscape of supply chain networks: an empirical analysis of topological structure[J]. INFOR: Information Systems and Operational Research, 2021, 59(1): 53-73. |
4 | PATHAK S D, DILTS D M, BISWAS G. On the evolutionary dynamics of supply network topologies[J]. IEEE Transactions on Engineering Management, 2007, 54(4): 662-672. |
5 | 曹文彬,熊曦.边效益因素下复杂供应链网络局域演化机制[J].计算机应用研究,2016,33(1):75-77. |
CAO W B, XIONG X. Local-world evolution model of complex supply chain network under edge benefit[J]. Application Research of Computers, 2016, 33(1):75-77. | |
6 | 丁飞,陈红.复杂网络视角下供应链网络模型研究[J].中北大学学报(自然科学版),2018,39(2):120-127. |
DING F, CHEN H. Supply chain network modeling research from perspective of complex network[J]. Journal of North University of China (Natural Science Edition), 2018, 39(2):120-127. | |
7 | 丁飞,陈红,杨冀豫. 基于复杂网络的供应链网络演化模型研究[J]. 计算机与数字工程, 2018, 46(2):343-347. |
DING F, CHEN H, YANG J Y. Research on the evolution model of supply chain network based on the complex network[J]. Computer and Digital Engineering, 2018, 46(2):343-347 | |
8 | 王迪飞,菅利荣,刘思峰,等.基于边数随机增长的扩展无标度网络演化模型研究[J].系统工程理论与实践,2022,42(5):1327-1344. |
WANG D F, JIAN L R, LIU S F, et al. An extended scale-free network evolution model based on random growth of edge number[J]. Systems Engineering — Theory and Practice, 2022, 42(5):1327-1344. | |
9 | 钱晓东,杨贝. 基于复杂网络模型的供应链企业合作演化研究[J]. 复杂系统与复杂性科学, 2018, 15(3):1-10. |
QIAN X D, YANG B. Supply chain enterprise cooperation evolution based on complex network model[J]. Complex Systems and Complexity Science, 2018, 15(3):1-10. | |
10 | 钱晓东,王昱澎.区块链环境下供应链网络演化研究[J]. 统计与信息论坛,2022,37(5):76-89. |
QIAN X D, WANG Y P. Research on the evolution of supply chain networks in the blockchain environment[J]. Journal of Statistics and Information, 2022, 37(5):76-89. | |
11 | SUN Q, JIANG L, XU H. Expectation-maximization algorithm of Gaussian mixture model for vehicle-commodity matching in logistics supply chain[J]. Complexity, 2021, 2021: No.9305890. |
12 | EHTESHAM RASI R, SOHANIAN M. A multi-objective optimization model for sustainable supply chain network with using genetic algorithm[J]. Journal of Modelling in Management, 2021, 16(2): 714-727. |
13 | MOHAMMED A, DUFFUAA S O. A hybrid algorithm based on tabu search and generalized network algorithm for designing multi-objective supply chain networks[J]. Neural Computing and Applications, 2022, 34(23): 20973-20992. |
14 | FOSSO WAMBA S, AKTER S. Big data analytics for supply chain management: a literature review and research agenda[C]// Proceedings of the 2015 Enterprise and Organizational Modeling and Simulation, LNBIP 231. Cham: Springer, 2015: 61-72. |
15 | PERERA S, BELL M G H, KURAUCHI F, et al. Absorbing Markov chain approach to modelling disruptions in supply chain networks[C]// Proceedings of the 2019 Moratuwa Engineering Research Conference. Piscataway: IEEE, 2019: 515-520. |
16 | LIU Q, HAI F, LIU G. Supply chain network optimization of deadlock: a model based on petri net[C]// Proceedings of the 2010 International Conference on Logistics Systems and Intelligent Management — Volume 3. Piscataway: IEEE, 2010: 1396-1399. |
17 | AHN G, HUR S. Markov network model with unreliable edges[J]. International Journal of Industrial Engineering: Theory, Applications and Practice, 2016, 23(3): No.2850. |
18 | 张学龙,韩黎丽,覃滢樾,等.基于马尔可夫链的供应链信任演化博弈与稳定策略[J].统计与决策,2019,35(10):47-51. |
ZHANG X L, HAN L L, QIN Y Y, et al. Trust evolutionary game and stability strategy of supply chain based on Markov chain[J]. Statistics and Decision, 2019, 35(10): 47-51. | |
19 | 柯荣,赵敬华,魏海蕊,等.考虑消费者偏好的新能源汽车供应链优化与协调机制[J].机械设计与研究,2022,38(1):154-160. |
KE R, ZHAO J H, WEI H R, et al. Optimization and coordination mechanism of new energy vehicle supply chain considering consumer preference[J]. Machine Design and Research, 2022, 38(1):154-160. |
[1] | Jie HUANG, Ruizi WU, Junli LI. Efficient adaptive robustness optimization algorithm for complex networks [J]. Journal of Computer Applications, 2024, 44(11): 3530-3539. |
[2] | Lin ZHOU, Yuzhi XIAO, Peng LIU, Youpeng QIN. Community mining algorithm based on multi-relationship of nodes and its application [J]. Journal of Computer Applications, 2023, 43(5): 1489-1496. |
[3] | Peng LI, Shilin WANG, Guangwu CHEN, Guanghui YAN. Key node mining in complex network based on improved local structural entropy [J]. Journal of Computer Applications, 2023, 43(4): 1109-1114. |
[4] | Xiangxi WEN, Yating PENG, Kexin BI, Yuming HENG, Minggong WU. Situation prediction of flight conflict network based on online fuzzy least squares support vector machine with optimal training set [J]. Journal of Computer Applications, 2023, 43(11): 3632-3640. |
[5] | LI Zhanli, LI Ying, LUO Xiangyu, LUO Yingxiao. Local community detection algorithm based on Monte-Carlo iterative solving strategy [J]. Journal of Computer Applications, 2023, 43(1): 104-110. |
[6] | Yuyu MENG, Jing GUO. Link prediction algorithm based on information entropy improved PCA model [J]. Journal of Computer Applications, 2022, 42(9): 2823-2829. |
[7] | Zhigang HAO, Li QIN. Method for discovering important nodes in food safety standard reference network based on multi-attribute comprehensive evaluation [J]. Journal of Computer Applications, 2022, 42(4): 1178-1185. |
[8] | Jun HU, Zhengkang XU, Li LIU, Fujin ZHONG. Network embedding method based on multi-granularity community information [J]. Journal of Computer Applications, 2022, 42(3): 663-670. |
[9] | Guangfu CHEN, Haibo WANG, Yanping LIAN. Link prediction in directed network based on high-order self-included collaborative filtering [J]. Journal of Computer Applications, 2022, 42(10): 3060-3068. |
[10] | CAI Biao, LI Ruicen, WU Yuanyuan. Impact and enhancement of similarity features on link prediction [J]. Journal of Computer Applications, 2021, 41(9): 2569-2577. |
[11] | LI Yafang, LIANG Ye, FENG Weiwei, ZU Baokai, KANG Yujian. Deep network embedding method based on community optimization [J]. Journal of Computer Applications, 2021, 41(7): 1956-1963. |
[12] | LI Ping, WANG Fen, CHEN Qidong, SUN Jun. Discrete random drift particle swarm optimization algorithm for solving multi-objective community detection problem [J]. Journal of Computer Applications, 2021, 41(3): 803-811. |
[13] | DONG Hai, WU Yao, QI Xinna. Multi-objective robust optimization design of blood supply chain network based on improved whale optimization algorithm [J]. Journal of Computer Applications, 2021, 41(10): 3063-3069. |
[14] | ZHENG Wenping, YUE Xiangdou, YANG Gui. Improved label propagation algorithm based on random walk [J]. Journal of Computer Applications, 2020, 40(12): 3423-3429. |
[15] | CHENG Qiwei, CHEN Qimai, HE Chaobo, LIU Hai. Overlapping community detection method based on improved symmetric binary nonnegative matrix factorization [J]. Journal of Computer Applications, 2020, 40(11): 3203-3210. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||