[1] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine:theory and applications[J]. Neurocomputing, 2006,70(1):489-501. [2] SHI Y H, EBERHART R. A modified particle swarm optimizer[C]//Proceedings of the 1998 IEEE International Conference of Evolutionary Computation. Piscataway, NJ:IEEE, 1998:69-73. [3] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of the 1995 IEEE International Conference on Neural Networks. Piscataway, NJ:IEEE, 1995:1942-1948. [4] LEI X J,SUN J J,MAQ Z. Multiple sequence alignment based on chaotic PSO[J].Computational Intelligence and Intelligent Systems, 2009, 117(2/3):351-360. [5] HAN F, YAO H F,LING Q H.An improved extreme learning machine based on particle swarm optimization[C]//Proceedings of the 7th International Conference on Intelligent Computing:Bio-Inspired Computing an Applications. Berlin:Springer-Verlag, 2012:699-704. [6] YANG J M, MA M M, CHE H J, et al. Multi-objective adaptive chaotic particle swarm optimization algorithm[J]. Control and Decision, 2015, 30(12):2168-2174. [7] HE Z B, WEN X H, HU LIU, et al. A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region[J]. Journal of Hydrology, 2014, 509:379-386. [8] 陆慧娟,安春霖,马小平,等.基于输出不一致测度的极限学习机集成的基因表达数据分类[J].计算机学报, 2013, 36(2):341-348. (LU H J,AN C L,MA X P, et al. Disagreement measure based ensemble of extreme learning machine for gene expression data classification[J].Chinese Journal of Computers, 2013,36(2):341-348.) [9] HUANG G B, CHEN L, SIEW C K. Enhanced random search based incremental extreme learning machine[J]. Neurocomputing, 2008, 71(18):3460-3468. [10] HUANG G B, ZHOU H M, DING X J, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, 2012, 42(2):513-529. [11] ZHANG Y N, TENG H F. Detecting particle swarm optimization[J]. Concurrency & Computation Practice & Experience, 2009, 21(4):449-473. [12] 卢新国,林亚平,骆嘉伟,等.癌症识别中一种基于组合GCM和CCM的分类算法[J].软件学报, 2010, 21(11):2838-2851.(LU X G, LIN Y P, LUO J W, et al. Classification algorithm combined GCM with CCM in cancer recognition[J].Journal of Software, 2010, 21(11):2838-2851.) [13] EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]//Proceedings of the 6th International Symposium on Micro Machine and Human Science. Piscataway, NJ:IEEE, 1995:39-43. [14] 田东平.基于Tent混沌序列的粒子群优化算法[J].计算机工程, 2010, 36(4):180-182.(TIAN D P. Particle swarm optimization algorithm based on tent chaotic sequence[J].Computer Engineering, 2010, 36(4):180-182.) [15] 刘斌.微粒群优化算法的改进研究与应用[D].西安:西安交通大学, 2009.(LIU B. Improvement research and application of particle swarm optimization algorithm[D]. Xi'an:Xi'an Jiaotong University, 2009.) [16] 施美珍.基于粒子群优化算法的模糊聚类分析及其应用[D].广州:华南理工大学, 2012.(SHI M Z. Fuzzy clustering analysis and application based on particle swarm optimization[D].Guangzhou:South China University of Technology, 2012.) [17] 刘丽霞.基于小波理论与LSSVM的模拟集成电路故障诊断方法[D].西安:西安电子科技大学, 2011.(LIU L X.Fault diagnosis method for analog integrated circuits based on wavelet theory and LSSVM[D].Xi'an:Xidian University, 2011.) [18] 张志华.基于混合递阶差分进化算法的RBF神经网络优化及应用[D].广州:华南理工大学, 2013. (ZHANG Z H. The RBF neural network optimization and application based on hybrid hierarchical DE algorithm[D].Guangzhou:South China University of Technology, 2013.) [19] 张云明.基于新变异算子的改进粒子群优化算法[J].计算机工程与科学, 2011,33(9):95-99.(ZHANG Y M. An improved particle swarm optimization algorithm based on new mutation operators[J].Computer Engineering & Science, 2011, 33(9):95-99.) |