[1] 曾安,张艺楠,潘丹,等.基于稀疏降噪自编码器的深度置信网络[J].计算机应用,2017,37(9):2585-2589.(ZENG A, ZHANG Y N, PAN D, et al. Deep belief networks based on sparse denoising auto encoders[J]. Journal of Computer Applications, 2017, 37(9):2585-2589.) [2] 张娟,杨建功,汪西莉.条件深度玻尔兹曼机人脸图像分割模型[J].小型微型计算机系统,2017,38(5):1130-1133.(ZHANG J, YANG J G, WANG X L. Conditional deep Boltzmann machine face image segmentation model[J]. Journal of Chinese Computer Systems, 2017, 38(5):1130-1133.) [3] 张立民,刘凯.基于深度玻尔兹曼机的文本特征提取研究[J].微电子学与计算机,2015,32(2):142-147.(ZHANG L M, LIU K. Document features extraction based on DBM[J]. Microelectronics & Computer, 2015, 32(2):142-147.) [4] 李楠,卢钢,李新利,等.基于集成深度玻尔兹曼机和最小二乘支持向量回归的燃烧过程NOx预测算法[J].动力工程学报,2016,36(8):615-620.(LI N, LU G, LI X L, et al. Nox emission prediction based on deep Boltzmann machine integrated with least square support vector regression[J]. Journal of Chinese Society of Power Engineering, 2016, 36(8):615-620.) [5] 刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567-577.(LIU S S, CHENG X, GUO W Y, et al. Progress report on new research in deep learning[J]. CAAI Transactions on Intelligent Systems, 2016, 11(5):567-577.) [6] 尹宝才,王文通,王立春.深度学习研究综述[J].北京工业大学学报,2015,41(1):48-59.(YI B C, WANG W T, WANG L C. Review of deep learning[J]. Journal of Beijing University of Technology. 2015, 41(1):48-59.) [7] ZHAO Z J, GU J W. Recognition of digital modulation signals based on hybrid three-order restricted Boltzmann machine[C]//Proceedings of the 2016 International Conference on Communication Technology. Piscataway, NJ:IEEE, 2016:166-169. [8] NAKASHIKA T, MIMAMI Y. Generative acoustic-phonemic-speaker model based on three-way restricted Boltzmann machine[C]//Proceedings of the 2016 International Conference on INTERSPEECH. Berlin:Springer, 2016:1487-1491. [9] DENTON E, CHINTALA S, SZLAMA, et al. Deep generative image models using a laplacian pyramid of adversarial networks[C]//Proceedings of the 2015 International Conference on Neural Information Processing Systems. Montréal:NIPS, 2015:1486-1494. [10] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1):1929-1958. [11] 刘凯,张立民,周立军.随机受限玻尔兹曼机组设计[J].上海交通大学学报(自然版),2017,51(10):1235-1240.(LIU K, ZHANG L M, ZHOU L J. Design of random restricted boltzmann machine group[J]. Journal of Shanghai Jiaotong University (Science), 2017, 51(10):1235-1240.) [12] SALAKHUTDINOV R, HINTON G. An efficient learning procedure for deep Boltzmann machines[J]. Neural Computation, 2014, 24(8):1967-2006. [13] 刘凯,张立民,孙永威.基于遗传算法的RBM优化设计[J].微电子学与计算机,2015,32(6):96-100.(LIU K, ZHANG L M, SUN Y W. RBM optimization based on genetic algorithms[J]. Microelectronics & Computer, 2015, 32(6):96-100.) [14] CARLSON D, CEVHER V, CARIN L. Stochastic spectral descent for restricted Boltzmann machines[C]//Proceedings of the 2015 International Conference on Artificial Intelligence and Statistics. Berlin:Springer, 2015:111-119. [15] LEE H, EKANADHAM C, NG A Y. Sparse deep belief net model for visual area V2[C]//Proceedings of the 2008 International Conference on Advances in Neural Information Processing Systems. New York:Curran Associates Inc, 2008:873-880. [16] LUO H, SHEN R, NIU C. Sparse group restricted Boltzmann machines[C]//Proceedings of the 25th American Association for Artificial Intelligence Conference on Artificial Intelligence and the 23rd Innovative Applications of Artificial Intelligence Conference. San Francisco:AI Access Foundation, 2011:429-434. [17] JIN N, ZHANG J S, ZHANG C X. A sparse-response deep belief network based on rate distortion theory[J]. Pattern Recognition, 2014, 47(9):3179-3191. [18] TIELEMAN T, HINTON G E. Using fast weights to improve persistent contrastive divergence[C]//Proceedings of the 26th International Conference on Machine Learning. Madison:Omni Press, 2009:1033-1040. [19] 刘凯,张立民,张超.受限玻尔兹曼机的新混合稀疏惩罚机制[J].浙江大学学报(工学版),2015,49(6):1070-1078.(LIU K, ZHANG L M, ZHANG C. New hybrid sparse penalty mechanism of restricted Boltzmann machine[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(6):1070-1078.) [20] 许曈,凌有铸,陈孟元.一种融合DGSOM神经网络的仿生算法研究[J].智能系统学报,2017,12(3):405-412.(XU T, LING Y Z, CHEN M Y. A bio-inspired algorithm integrated with DGSOM neural network[J]. CAAI Transactions on Intelligent Systems, 2017, 12(3):405-412.) [21] 王蕾,王连明.一种改进的基于STDP规则的SOM脉冲神经网络[J].东北师大学报(自然科学版),2017,49(3):52-56.(WANG L, WANG L M. An improved self-organizing map spiking neural networks based on STDP rule[J]. Journal of Northeast Normal University (Natural Science Edition), 2017, 49(3):52-56.) [22] LW C, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. [23] CHANG C C, LIN C J. LIBSVM:a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3):27-31. [24] SALAKHUTDINOV R, HINTON G. Deep Boltzmann machines[J]. Journal of Machine Learning Research, 2009, 5(2):1967-2006. [25] HOYER P O. Non-negative matrix factorization with sparseness constraints[J]. Journal of Machine Learning Research, 2004, 5(1):1457-1469. |