| 1 | GONG S G, CRISTANI M, LOY C C, et al. The re-identification challenge[M]// GONG S G, CRISTANI M, YAN S C, et al. Person Re-Identification. London: Springer, 2014: 1-20. 10.1007/978-1-4471-6296-4_1 | 
																													
																							| 2 | GRAY D, TAO H. Viewpoint invariant pedestrian recognition with an ensemble of localized features[C]// Proceedings of the 2008 European Conference on Computer Vision, LNCS5302. Berlin: Springer, 2008: 262-275. | 
																													
																							| 3 | LI W, ZHAO R, XIAO T, et al. DeepReID: deep filter pairing neural network for person re-identification[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 152-159. 10.1109/cvpr.2014.27 | 
																													
																							| 4 | ZHENG L, SHEN L Y, TIAN L, et al. Scalable person re-identification: a benchmark[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1116-1124. 10.1109/iccv.2015.133 | 
																													
																							| 5 | ZHENG Z D, ZHENG L, YANG Y. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 3774-3782. 10.1109/iccv.2017.405 | 
																													
																							| 6 | LUO H, JIANG W, GU Y Z, et al. A strong baseline and batch normalization neck for deep person re-identification[J]. IEEE Transactions on Multimedia, 2020, 22(10): 2597-2609. 10.1109/tmm.2019.2958756 | 
																													
																							| 7 | LUO H, JIANG W, ZHANG X, et al. AlignedReID++: dynamically matching local information for person re-identification[J]. Pattern Recognition, 2019, 94: 53-61. 10.1016/j.patcog.2019.05.028 | 
																													
																							| 8 | WANG G S, YUAN Y F, CHEN X, et al. Learning discriminative features with multiple granularities for person re-identification[C]// Proceedings of the 26th ACM International Conference on Multimedia. New York: ACM, 2018: 274-282. 10.1145/3240508.3240552 | 
																													
																							| 9 | HUANG Y, XU J S, WU Q, et al. Beyond scalar neuron: adopting vector-neuron capsules for long-term person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(10): 3459-3471. 10.1109/tcsvt.2019.2948093 | 
																													
																							| 10 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2818-2826. 10.1109/cvpr.2016.308 | 
																													
																							| 11 | SUN Y F, CHENG C M, ZHANG Y H, et al. Circle loss: a unified perspective of pair similarity optimization[C]// Proceedings of the 2020 IEEE/CVF International Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 6397-6406. 10.1109/cvpr42600.2020.00643 | 
																													
																							| 12 | WANG K, MA Z, CHEN S Y, et al. A benchmark for clothes variation in person re-identification[J]. International Journal of Intelligent Systems, 2020, 35(12): 1881-1898. 10.1002/int.22276 | 
																													
																							| 13 | HAQUE A, ALAHI A, LI F F. Recurrent attention models for depth-based person identification[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1229-1238. 10.1109/cvpr.2016.138 | 
																													
																							| 14 | MUNARO M, BASSO A, FOSSATI A, et al. 3D reconstruction of freely moving persons for re-identification with a depth sensor[C]// Proceedings of the 2014 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2014: 4512-4519. 10.1109/icra.2014.6907518 | 
																													
																							| 15 | MUNARO M, FOSSATI A, BASSO A, et al. One-shot person re-identification with a consumer depth camera[M]// GONG S G, CRISTANI M, YAN S C, et al. Person Re-Identification. London: Springer, 2014: 161-181. 10.1007/978-1-4471-6296-4_8 | 
																													
																							| 16 | BARBOSA I B, CRISTANI M, DEL BUE A, et al. Re-identification with RGB-D sensors[C]// Proceedings of the 2012 European Conference on Computer Vision, LNCS7583. Berlin: Springer, 2012: 433-442. | 
																													
																							| 17 | YANG Q Z, WU A C, ZHENG W S. Person re-identification by contour sketch under moderate clothing change[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(6): 2029-2046. 10.1109/tpami.2019.2960509 | 
																													
																							| 18 | YU S J, LI S H, CHEN D P, et al. COCAS: a large-scale clothes changing person dataset for re-identification[C]// Proceedings of the 2020 IEEE/CVF International Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 3397-3406. 10.1109/cvpr42600.2020.00346 | 
																													
																							| 19 | QIAN X L, WANG W X, ZHANG L, et al. Long-term cloth-changing person re-identification[C]// Proceedings of the 2020 Asian Conference on Computer Vision, LNCS12624. Cham: Springer, 2021: 71-88. | 
																													
																							| 20 | SABOUR S, FROSST N, HINTON G E. Dynamic routing between capsules[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017:3859-3869. | 
																													
																							| 21 | LaLONDE R, BAGCI U. Capsules for object segmentation[EB/OL]. (2018-04-11) [2021-03-12].. 10.1016/j.media.2020.101889 | 
																													
																							| 22 | JAISWAL A, ABDALMAGEED W, WU Y, et al. CapsuleGAN: Generative adversarial capsule network[C]// Proceedings of the 2018 European Conference on Computer Vision. Berlin: Springer, 2018: 526-535. 10.1007/978-3-030-11015-4_38 | 
																													
																							| 23 | HINTON G, SABOUR S, FROSST N. Matrix capsules with EM routing[EB/OL]. [2021-03-12].. 10.4324/9781003091127-2 | 
																													
																							| 24 | HUANG G, LIU Z, MAATEN L VAN DER, et al. Densely connected convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. 10.1109/cvpr.2017.243 | 
																													
																							| 25 | SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15: 1929-1958. | 
																													
																							| 26 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. 10.1109/cvpr.2018.00745 | 
																													
																							| 27 | HUANG Y, WU Q, XU J S, et al. Celebrities-ReID: a benchmark for clothes variation in long-term person re-identification[C]// Proceedings of the 2019 International Joint Conference on Neural Networks. Piscataway: IEEE, 2019: 1-8. 10.1109/ijcnn.2019.8851957 | 
																													
																							| 28 | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. (2017-01-30) [2021-03-12]. | 
																													
																							| 29 | YU Q, CHANG X B, SONG Y Z, et al. The devil is in the middle: exploiting mid-level representations for cross-domain instance matching[EB/OL]. (2018-04-04) [2021-03-12].. | 
																													
																							| 30 | ZHENG Z D, ZHENG L, YANG Y. A discriminatively learned CNN embedding for person reidentification[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2018, 14(1): No.13. 10.1145/3159171 | 
																													
																							| 31 | CHANG X B, HOSPEDALES T M, XIANG T. Multi-level factorisation net for person re-identification[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2109-2118. 10.1109/cvpr.2018.00225 | 
																													
																							| 32 | SUN Y F, ZHENG L, YANG Y, et al. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline)[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS11208. Cham: Springer, 2018: 501-518. |