[1] ZHANG M L, ZHOU Z H. A review on multi-label learning algorithms[J]. IEEE Transactions on Knowledge & Data Engineering, 2014, 26(8):1819-1837. [2] ZHANG M L. LIFT:multi-label learning with label-specific features[C]//Proceedings of the 22nd International Joint Conference on Artificial Intelligence. Menlo Park, CA:AAAI Press, 2011:1609-1614. [3] ZHANG M L, ZHOU Z H. ML-KNN:a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7):2038-2048. [4] LEE J, KIM D W. Feature selection for multi-label classification using multivariate mutual information[J]. Pattern Recognition Letters, 2013, 34(3):349-357. [5] ZHANG Y, ZHOU Z H. Multi-label dimensionality reduction via dependence maximization[C]//Proceedings of the 23rd National Conference on Artificial Intelligence. Menlo Park, CA:AAAI Press, 2008:1503-1505. [6] GENG X, JI R. Label distribution learning[J]. IEEE Transactions on Knowledge & Data Engineering, 2016, 28(7):1734-1748. [7] HE Z, LI X, ZHANG Z, et al. Data-dependent label distribution learning for age estimation[J]. IEEE Transactions on Image Processing, 2017, 26(8):3846-3858. [8] GENG X, ZHOU Z H, SMITH-MILES K. Automatic age estimation based on facial aging patterns[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2007, 29(12):2234-2240. [9] GENG X, ZHOU Z H, SMITH-MILES K. Individual stable space:an approach to face recognition under uncontrolled conditions[J]. IEEE Transactions on Neural Networks, 2008, 19(8):1354-68. [10] ZHOU D, ZHANG X, ZHOU Y, et al. Emotion distribution learning from texts[EB/OL].[2018-03-20].http://www.aclweb.org/anthology/D/D16/D16-1061.pdf. [11] WU X, YU K, WANG H, et al. Online streaming feature selection[C]//Proceedings of the 27th International Conference on International Conference on Machine Learning.[S.l.]:Omnipress, 2010:1159-1166. [12] YU K, DING W, WU X. LOFS:a library of online streaming feature selection[J]. Knowledge-Based Systems, 2016, 113:1-3. [13] 张振海,李士宁,李志刚,等.一类基于信息熵的多标签特征选择算法[J].计算机研究与发展, 2013,50(6):1177-1184.(ZHANG Z H, LI S N, LI Z G, et al. Multi-label feature selection algorithm based on information entropy[J]. Journal of Computer Research and Development, 2013, 50(6):1177-1184.) [14] PAWLAK Z. Rough Sets:Theoretical Aspects of Reasoning about Data[M]. Boston:Kluwer Academic Publishers, 1991:9-32. [15] 杨传健, 葛浩, 汪志圣. 基于粗糙集的属性约简方法研究综述[J]. 计算机应用研究, 2012, 29(1):16-20.(YANG C J, GE H, WANG Z S. Overview of attribute reduction based on rough set[J]. Application Research of Computers, 2012, 29(1):16-20.) [16] YU Y, PEDRYCZ W, MIAO D. Neighborhood rough sets based multi-label classification for automatic image annotation[J]. International Journal of Approximate Reasoning, 2013, 54(9):1373-1387. [17] YU Y, PEDRYCZ W, MIAO D. Multi-label classification by exploiting label correlations[J]. Expert Systems with Applications, 2014, 41(6):2989-3004. [18] 段洁, 胡清华, 张灵均,等. 基于邻域粗糙集的多标记分类特征选择算法[J]. 计算机研究与发展, 2015, 52(1):56-65.(DU J, HU Q H, ZHANG L J, et al. Feature selection for multi-label classification based on neighborhood rough sets[J]. Journal of Computer Research and Development, 2015, 52(1):56-65.) [19] 李志欣,卓亚琦,张灿龙,等. 多标记学习研究综述[J]. 计算机应用研究, 2014, 31(6):1601-1605.(LI Z X, ZHUO Y Q, ZHANG C L, et al. Survey on multi-label learning[J].Application Research of Computers, 2014, 31(6):1601-1605.) [20] 刘景华, 林梦雷, 王晨曦,等. 基于局部子空间的多标记特征选择算法[J]. 模式识别与人工智能, 2016, 29(3):240-251. (LIU J H, LIN M L, WANG C X, et al. Multi-label feature selection algorithm based on local subspace[J]. Pattern Recognition and Artificial Intelligence, 2016, 29(3): 240-251.) [21] LI F, MIAO D, PEDRYCZ W. Granular multi-label feature selection based on mutual information[J]. Pattern Recognition, 2017, 67(C): 410-423. [22] LEE J, KIM D W. Mutual information-based multi-label feature selection using interaction information[J]. Expert Systems with Applications, 2015, 42(4):2013-2025. [23] 贾俊平.统计学[M]. 5版. 北京:中国人民大学出版社,2012: 268-270.(JIA J P. Statistics [M]. 5th ed. Beijing: China Renmin University Press, 2012: 268-270.) [24] DOUGHERTY J, KOHAVI R, SAHAMI M. Supervised and unsupervised discretization of continuous features[C]// Proceedings of the Twelfth International Conference on Machine Learning. San Francisco, CA: Morgan Kaufmann Publishers, 1995:194-202. |