[1] WEISS G M, ZADROZNY B, SAAR M. Guest editorial:special issue on utility-based data mining[J]. Data Mining and Knowledge Discovery, 2008, 17(2):129-135. [2] del CASTILLO M D, SERRANO J I. A multistrategy approach for digital text categorization from imbalanced documents[J]. ACM SIGKDD Explorations Newsletter, 2004, 6(1):70-79. [3] WEI W, LI J, CAO L. Effective detection of sophisticated online banking fraud on extremely imbalanced data[J]. World Wide Web, 2013, 16(4):449-475. [4] 江颉,王卓芳,GONG R S,等.不平衡数据分类方法及其在入侵检测中的应用研究[J].计算机科学,2013,40(4):131-135.(JIANG J, WANG Z F, GONG R S, et al. Imbalanced data classification method and its application research for intrusion detection[J]. Computer Science, 2013, 40(4):131-135.) [5] KUBAT M, HOLTE RC, MATWIN S. Machine learning for the detection of oil spills in satellite radar images[J]. Machine Learning, 1998, 30(2):195-215. [6] SCHAEFER G, NAKASHIMA T. Strategies for addressing class imbalance in ensemble classification of thermography breast cancer features[C]//Proceedings of the 2015 IEEE Congress on Evolutionary Computation. Piscataway, NJ:IEEE, 2015:2362-2367. [7] CHAWLA N V, BOWYER K W, HALL L O. SMOTE:synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16(1):321-357. [8] QIAN Y, LIANG Y, LI M. A resampling ensemble algorithm for classification of imbalance problems[J]. Neurocomputing, 2014, 143:57-67. [9] DOUZAS G, BACAO F, LAST F. Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE[J]. Information Sciences, 2018, 465:1-20. [10] GALAR M, FERNANDEZ A, BARRENECHEA E. Ordering-based pruning for improving the performance of ensembles of classifiers in the framework of imbalanced datasets[J]. Information Sciences, 2016, 354:178-196. [11] ZHANG Y, ZHANG D, MI G. Using ensemble methods to deal with imbalanced data in predicting protein-protein interactions[J]. Computational Biology and Chemistry, 2012, 36(2):36-41. [12] KIM M J, KANG D K, KIM H B. Geometric mean based boosting algorithm with over-sampling to resolve data imbalance problem for bankruptcy prediction[J]. Expert Systems with Applications, 2015, 42(3):1074-1082. [13] 李雄飞,李军,董元方,等. 一种新的不平衡数据学习算法PCBoost[J]. 计算机学报, 2012, 35(2):202-209.(LI X F, LI J, DONG Y F, et al. A new learning algorithm for imbalanced data PCBoost[J]. Chinese Journal of Computers, 2012, 35(2):202-209.) [14] HE H, ZHANG W, ZHANG S. A novel ensemble method for credit scoring:adaption of different imbalance ratios[J]. Expert Systems with Applications, 2018, 98:105-117. [15] 付忠良.多标签代价敏感分类集成学习算法[J]. 自动化学报, 2014, 40(6):1075-1085.(FU Z L. Cost-sensitive ensemble learning algorithm for multi-label classification problems[J]. Acta Automatica Sinica, 2014, 40(6):1075-1085.) [16] FAN W, STOLFO S J, ZHANG J, et al. AdaCost:misclassification cost-sensitive boosting[C]//ICML'99:Proceedings of the 16th International Conference on Machine Learning. San Francisco, CA:Morgan Kaufmann Publishers, 1999:97-105. [17] SUN Y, KAMEL M S, WONG A K C. Cost-sensitive boosting for classification of imbalanced data[J]. Pattern Recognition, 2007, 40(12):3358-3378. [18] JOSHI M V, KUMAR V, AGARWAL R. Evaluating boosting algorithms to classify rare classes:comparison and improvements[C]//Proceedings of the 2001 IEEE International Conference on Data Mining. Piscataway, NJ:IEEE, 2001:257-264. [19] SIERS M J, ISLAM M Z. Software defect prediction using a cost sensitive decision forest and voting, and a potential solution to the class imbalance problem[J]. Information Systems, 2015, 51:62-71. [20] ZHANG Y, WANG D. A cost-sensitive ensemble method for class-imbalanced data sets[J]. Abstract and Applied Analysis, 2013, 2013:Article ID 196256. [21] AODHA O M, BROSTOW G J. Revisiting example dependent cost-sensitive learning with decision trees[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE, 2013:193-200. [22] GALAR M, FERNANDEZ A, BARRENECHEA E. EUSBoost:enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling[J]. Pattern Recognition, 2013, 46(12):3460-3471. [23] ROY N K S, ROSSI B. Cost-sensitive strategies for data imbalance in bug severity classification:experimental results[C]//Proceedings of the 201743rd Euromicro Conference on Software Engineering and Advanced Applications. Washington, DC:IEEE Computer Society, 2017:426-429. [24] LEE H K, KIM S B. An overlap-sensitive margin classifier for imbalanced and overlapping data[J]. Expert Systems with Applications, 2018, 98:72-83. |