[1] 王行愚,金晶,张宇,等.脑控:基于脑——机接口的人机融合控制[J].自动化学报,2013,39(3):208-221. (WANG X Y, JIN J, ZHANG Y, et al. Brain control:human-computer integration control based on brain-computer interface[J]. Acta Automatica Sinica, 2013, 39(3):208-221.) [2] MINGUILLON J, LOPEZ-GORDO M A, PELAYO F. Trends in EEG-BCI for daily-life:requirements for artifact removal[J]. Biomedical Signal Processing and Control, 2017, 31:407-418. [3] AVILÉS-CRUZ C, VILLEGAS-CORTEZ J, FERREYRA-RAMíREZ A, et al. EEG pattern recognition:an efficient improvement combination of ERD/ERS/laterality features to create a self-paced BCI system[C]//Proceedings of the 2016 Mexican Conference on Pattern Recognition, LNCS 9703. Cham:Springer, 2016:231-240. [4] RAMOSER H, MVLLER-GERKING J, PFURTSCHELLER G. Optimal spatial filtering of single trial EEG during imagined hand movement[J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(4):441-446. [5] KAI K A, ZHENG Y C, ZHANG H, et al. Filter Bank Common Spatial Pattern (FBCSP) in brain-computer interface[C]//Proceedings of the 2008 IEEE International Joint Conference on Neural Networks. Piscataway, NJ:IEEE, 2008:2390-2397. [6] IQBAL H, AQIL M. A QR decomposition based RLS algorithm with forgetting factor for adaptation of AR EEG features[C]//Proceedings of the 2016 International Conference on Emerging Technologies. Piscataway, NJ:IEEE, 2016:1-5. [7] 唐智川,张克俊,李超,等.基于深度卷积神经网络的运动想象分类及其在脑控外骨骼中的应用[J].计算机学报,2017,40(6):1367-1378. (TANG Z C, ZHANG K J, LI C, et al. Motor imagery classification based on deep convolutional neural network and its application in exoskeleton controlled by EEG[J]. Chinese Journal of Computers, 2017, 40(6):1367-1378.) [8] PÉREZ-ZAPATA A F, CARDONA-ESCOBAR A F, JARAMILLO-GARZÓN J A, et al. Deep convolutional neural networks and power spectral density features for motor imagery classification of EEG signals[C]//Proceedings of the 2018 International Conference on Augmented Cognition. Berlin:Springer, 2018:158-169. [9] GRAMFORT A, STROHMEIER D, HAUEISEN J, et al. Time-frequency mixed-norm estimates:sparse M/EEG imaging with non-stationary source activations[J]. Neuroimage, 2013, 70(2):410-422. [10] SHAO S Y, SHEN K Q, ONG C J, et al. Automatic identification and removal of artifacts in EEG using a probabilistic multi-class SVM approach with error correction[C]//Proceedings of the 2008 IEEE Internatioanl Conference on Systems, Man and Cybernetics. Piscataway, NJ:IEEE, 2008:1134-1139. [11] BHARDWAJ A, GUPTA A, JAIN P, et al. Classification of human emotions from EEG signals using SVM and LDA classifiers[C]//Proceedings of the 2015 2nd International Conference on Signal Processing and Integrated Networks. Piscataway, NJ:IEEE, 2015:180-185. [12] NG S C, LEUNG S H, LUK A. Fast convergent generalized back-propagation algorithm with constant learning rate[J]. Neural Processing Letters, 1999, 9(1):13-23. [13] KENG A K, YANG C Z, WANG C, et al. Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b[J]. Frontiers in Neuroscience, 2012, 6:39. [14] NEU D, MAIRESSE O, VERBANCK P, et al. Non-REM sleep EEG power distribution in fatigue and sleepiness[J]. Journal of Psychosomatic Research, 2014, 76(4):286-291. |