[1] 杨秀霞, 刘小伟, 张毅. 基于时间约束的无人机避障研究[J]. 飞行力学, 2015, 33(2):125-129. (YANG X X, LIU X W, ZHANG Y. Research on obstacle avoidance of UAV based on time constraint[J]. Flight Mechanics, 2015, 33(2):125-129.) [2] 高迪. 无人机避障雷达目标探测与跟踪算法研究[D]. 哈尔滨:哈尔滨工业大学, 2017:10-17. (GAO D. Research on target detection and tracking algorithm for UAV obstacle avoidance radar[D]. Harbin:Harbin Institute of Technology, 2017:10-17.) [3] 朱平, 甄子洋, 覃海群,等. 基于立体视觉和光流的无人机避障算法研究[J]. 电光与控制, 2017, 24(12):31-35. (ZHU P, ZHEN Z Y, QIN H Q, el al. Research on UAV obstacle avoidance algorithm based on stereo vision and optical flow[J]. Electronics Optics & Control, 2017, 24(12):31-35.) [4] YANG Y, WANG T T, CEHN L, et al. Stereo vision based obstacle avoidance strategy for quadcopter UAV[C]//Proceedings of the 2018 Chinese Control and Decision Conference. Piscataway, NJ:IEEE, 2018:490-494. [5] HU Y Y, WANG Y X. Stereo vision-based fast obstacles avoidance without obstacles discrimination for indoor UAVs[C]//Proceedings of the 20112nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce. Piscataway, NJ:IEEE, 2011:4332-4337. [6] HU J, NIU Y, WANG Z. Obstacle avoidance methods for rotor UAVs using RealSense camera[C]//Proceedings of the 2017 Chinese Automation Congress. Piscataway, NJ:IEEE, 2017:7151-7155. [7] XU Z, WER R, ZHANG Q, et al. Obstacle avoidance algorithm for UAVs in unknown environment based on distributional perception and decision making[C]//Proceedings of the 2016 IEEE Chinese Guidance, Navigation and Control Conference. Piscataway, NJ:IEEE, 2016:1072-1075. [8] GAGEIK N, BENZ P, MONTENEGRO S. Obstacle detection and collision avoidance for a UAV with complementary low-cost sensors[J]. IEEE Access, 2015, 3:599-609. [9] RⅡSGAARD S, BLAS M R. SLAM for dummies:a tutorial approach to simultaneous localization and mapping[EB/OL].[2018-05-10]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.208.6289&rep=rep1&type=pdf. [10] 陈炜楠, 刘冠峰, 李俊良, 等. 室内环境的元胞自动机SLAM算法[J]. 机器人, 2016, 38(2):169-177. (CHEN W N, LIU G F, LI J L, et al. Cellular automaton SLAM algorithm for indoor environment[J]. Robot, 2016, 38(2):169-177.) [11] 徐伟杰, 李平, 韩波. 基于2点RANSAC的无人直升机单目视觉SLAM[J]. 机器人, 2012, 34(1):65-71. (XU W J, LI P, HAN B. Unmanned helicopter monocular vision SLAM based on 2 points RANSAC[J]. Robot, 2012, 34(1):65-71.) [12] BAI G, XIANG X, ZHU H, et al. Research on obstacles avoidance technology for UAV based on improved PTAM algorithm[C]//Proceedings of the 2015 IEEE International Conference on Progress in Informatics and Computing. Piscataway, NJ:IEEE, 2015:543-550. [13] CHEN Z, LUO X, DAI B. Design of obstacle avoidance system for micro-UAV based on binocular vision[C]//Proceedings of the 2017 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration. Piscataway, NJ:IEEE, 2017:67-70. [14] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507. [15] ABBAS M A. Improving deep learning performance using random forest HTM cortical learning algorithm[C]//Proceedings of the 2018 First International Workshop on Deep and Representation Learning. Piscataway, NJ:IEEE, 2018:13-18. [16] WANG Y. Cognitive foundations of knowledge science and deep knowledge learning by cognitive robots[C]//Proceedings of the 2017 IEEE 16th International Conference on Cognitive Informatics & Cognitive Computing. Piscataway, NJ:IEEE, 2017:5. [17] GOODFELLOW I, BENGIO Y, COURVILLE A, et al. Deep learning[M]. Cambridge, MA:MIT Press, 2016:11-12. [18] 杜学丹, 蔡莹皓, 鲁涛, 等. 一种基于深度学习的机械臂抓取方法[J]. 机器人, 2017, 39(6):820-828, 837. (DU X D, CAI Y H, LU T, et al. A mechanical arm grabbing method based on deep learning[J]. Robot, 2017, 39(6):820-828, 837.) [19] ZOU J, SONG R. Microarray camera image segmentation with faster-RCNN[C]//Proceedings of the 2018 IEEE International Conference on Applied System Invention. Piscataway, NJ:IEEE, 2018:86-89. [20] LECUN Y, KAVUKCUOGLU K, FARABET C. Convolutional networks and applications in vision[C]//Proceedings of the 2010 IEEE International Symposium on Circuits and Systems. Piscataway, NJ:IEEE, 2010:253-256. [21] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2014:580-587. [22] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE, 2015:1440-1448. [23] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [24] ZHENG W, XIAO J, XIN T. Integrated navigation system with monocular vision and LIDAR for indoor UAVs[C]//Proceedings of the 2017 12th IEEE Conference on Industrial Electronics and Applications. Piscataway, NJ:IEEE, 2017:924-929. [25] GUANGLEI M, HAIBING P. The application of ultrasonic sensor in the obstacle avoidance of quad-rotor UAV[C]//Proceedings of the 2016 IEEE Chinese Guidance, Navigation and Control Conference. Piscataway, NJ:IEEE, 2016:976-981. [26] DIXIT K R, KRISHNA P P, ANTONY R. Design and development of H frame quadcopter for control system with obstacle detection using ultrasound sensors[C]//Proceedings of the 2017 International Conference on Circuits, Controls, and Communications. Piscataway, NJ:IEEE, 2017:100-104. |