[1] 丁兆云, 贾焰, 周斌.微博数据挖掘研究综述[J]. 计算机研究与发展, 2014, 51(4):691-706. (DING Z Y, JIA Y, ZHOU B. Survey of data mining for microblogs[J]. Journal of Computer Research and Development, 2014, 51(4):691-706.) [2] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk:online learning of social representations[C]//KDD 2014:Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2014:701-710. [3] TANG J, QU M, WANG M, et al. LINE:large-scale information network embedding[C]//WWW 2015:Proceedings of the 24th International Conference on World Wide Web. Geneva, Switzerland:International World Wide Web Conferences Steering Committee, 2015:1067-1077. [4] WANG D, CUI P, ZHU W. Structural deep network embedding[C]//KDD 2016:Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2016:1225-1234. [5] 李志宇, 梁循, 周小平, 等. 一种大规模网络中基于节点结构特征映射的链接预测方法[J]. 计算机学报, 2016, 39(10):1947-1964. (LI Z Y, LIANG X, ZHOU X P, et al. A link prediction method for large-scale networks[J]. Chinese Journal of Computers, 2016, 39(10):1947-1964.) [6] WANG Z, CHEN C, LI W. Predictive network representation learning for link prediction[C]//SIGIR 2017:Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 2017:969-972. [7] YANG J, McAULEY J, LESKOVEC J. Community detection in networks with node attributes[C]//ICDM 2013:Proceedings of the 2013 IEEE 13th International Conference on Data Mining. Piscataway, NJ:IEEE, 2013:1151-1156. [8] McPHERSON M, SMITH-LOVIN L, COOK J M. Birds of a feather:homophily in social networks[J]. Annual Review of Sociology, 2001, 27(1):415-444. [9] AIELLO L M, BARRAT A, SCHIFANELLA R, et al. Friendship prediction and homophily in social media[J]. ACM Transactions on the Web, 2012, 6(2):1-33. [10] TRAUD A L, MUCHA P J, PORTER M A. Social structure of Facebook networks[J]. Physica A:Statistical Mechanics and its Applications, 2012, 391(16):4165-4180. [11] YANG C, LIU Z, ZHAO D, et al. Network representation learning with rich text information[C]//IJCAI 2015:Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence. Menlo Park, CA:AAAI Press, 2015:2111-2117. [12] ZHANG D, YIN J, ZHU X, et al. Homophily, structure, and content augmented network representation learning[C]//ICDM 2016:Proceedings of the 16th IEEE International Conference on Data Mining Series. Piscataway, NJ:IEEE, 2016:609-618. [13] LI H, WANG H, YANG Z, et al. Variation autoencoder based network representation learning for classification[C]//ACL 2017:Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA:ACL, 2017:56-61. [14] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//NIPS 2013:Proceedings of the Twenty-Seventh Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2013:3111-3119. [15] ZHANG D, YIN J, ZHU X, et al. User profile preserving social network embedding[C]//IJCAI 2017:Proceedings of the 26th International Joint Conference on Artificial Intelligence. Menlo Park, CA:AAAI Press, 2017:3378-3384. [16] RAHIMI A, RECHT B. Random features for large-scale kernel machines[C]//NIPS 2008:Proceedings of the Twenty-Second Annual Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2008:1177-1184. [17] 温雯, 黄家明, 蔡瑞初, 等. 一种融合节点先验信息的图表示学习方法[J]. 软件学报, 2018, 29(3):786-798. (WEN W, HUANG J M, CAI R C, et al. Graph embedding by incorporating prior knowledge on vertex information[J]. Journal of Software, 2018, 29(3):786-798.) [18] YANG C, SUN M, LIU Z, et al. Fast network embedding enhancement via high order proximity approximation[C]//IJCAI 2017:Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. Menlo Park, CA:AAAI Press, 2017:19-25. [19] HUANG X, LI J, HU X. Accelerated attributed network embedding[C]//SDM 2017:Proceedings of the 2017 SIAM International Conference on Data Mining. Philadelphia:SIAM, 2017:633-641. [20] LeCUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444. [21] CAO S, LU W, XU Q. Deep neural networks for learning graph representations[C]//AAAI 2016:Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Menlo Park, CA:AAAI Press, 2016:1145-1152. [22] LIAO L, HE X, ZHANG H, et al. Attributed social network embedding[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(12):2257-2270. [23] HAMILTON W L, YING R, LESKOVEC J. Representation learning on graphs:methods and applications[EB/OL].[2018-05-10]. https://arxiv.org/pdf/1709.05584. [24] SIETSMA J, DOW R J F. Creating artificial neural networks that generalize[J]. Neural Networks, 1991, 4(1):67-79. [25] HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5):359-366. [26] GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]//AISTATS 2010:Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Cambridge, MA:MIT Press, 2010:249-256. [27] KINGMA D P, BA J. Adam:a method for stochastic optimization[EB/OL].[2018-05-10]. https://arxiv.org/pdf/1412.6980. [28] LESKOVEC J, MCAULEY J J. Learning to discover social circles in ego networks[C]//NIPS 2012:Proceedings of the Twenty-sixth Annual Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2012:539-547. [29] 吕琳媛. 复杂网络链路预测[J]. 电子科技大学学报, 2010, 39(5):651-661. (LYU L Y. Link prediction on complex networks[J]. Journal of University of Electronic Science and Technology of China, 2010, 39(5):651-661.) [30] FAN R E, CHANG K W, HSIEH C J, et al. LIBLINEAR:a library for large linear classification[J]. Journal of Machine Learning Research, 2008, 9:1871-1874. |