[1] NOBLE J A, BOUKERROUI D. Ultrasound image segmentation:a survey[J]. IEEE Transactions on Medical Imaging, 2006, 25(8):987-1010. [2] 冉隆科. 一种基于角点检测方法的骨龄图像关键点定位[J]. 电子设计工程, 2011, 19(14):175-177. (RAN L K. A corner detection method based on the image of the skeletal age point positioning[J]. Electronic Design Engineering, 2011, 19(14):175-177.) [3] MAHAPATRA D. Landmark detection in cardiac MRI using learned local image statistics[C]//STACOM 2012:Proceedings of the 2012 Statistical Atlases and Computational Models of the Heart - Imaging and Modelling Challenges, LNCS 7746. Berlin:Springer, 2012:115-124. [4] YANG X, JIN J, XU M, et al. Ultrasound common carotid artery segmentation based on active shape model[J]. Computational and Mathematical Methods in Medicine, 2013, 2013(2):345968. [5] COOTES T F, TAYLOR C J, COOPER D H, et al. Active shape models-their training and application[J]. Computer Vision & Image Understanding, 1995, 61(1):38-59. [6] VARGAS-QUINTERO L, ESCALANTE-RAMÍREZ B, MARÍN L C, et al. Left ventricle segmentation in fetal echocardiography using a multi-texture active appearance model based on the steered Hermite transform[J]. Computer Methods and Programs in Biomedicine, 2016, 137:231-245. [7] COOTES T F, EDWARDS G J, TAYLOR C J. Active appearance models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6):681-685. [8] DOLLÁR P, WELINDER P, PERONA P. Cascaded pose regression[C]//Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2010:1078-1085. [9] SUN P, ZHOU H, LUNDINE D, et al. Fast segmentation of left ventricle in CT images by explicit shape regression using random pixel difference features[EB/OL].[2018-05-10]. https://arxiv.org/pdf/1507.07508. [10] SEDAI S, ROY P, GARNAVI R. Segmentation of right ventricle in cardiac mr images using shape regression[C]//MLMI 2015:Proceedings of the 2015 Machine Learning in Medical Imaging. Berlin:Springer, 2015:1-8. [11] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. [12] PRASOON A, PETERSEN K, IGEL C, et al. Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network[C]//MICCAI 2013:Proceedings of the 2013 Medical Image Computing and Computer-Assisted Intervention. Berlin:Springer, 2013:246-253. [13] YANG D, ZHANG S, YAN Z, et al. Automated anatomical landmark detection ondistal femur surface using convolutional neural network[C]//Proceedings of the 12th IEEE International Symposium on Biomedical Imaging. Piscataway, NJ:IEEE, 2015:17-21. [14] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [15] SUN Y, WANG X, TANG X. Deep convolutional network cascade for facial point detection[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2013:3476-3483. [16] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[EB/OL].[2018-05-10]. http://www.nvidia.in/content/tesla/pdf/machine-learning/imagenet-classification-with-deep-convolutional-nn.pdf. [17] NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines[C]//ICML 2010:Proceedings of the 27th International Conference on International Conference on Machine Learning. Madison, Wisconsin:Omnipress, 2010:807-814. [18] GIRSHICK R, DONAHUE J, DARRELL T, et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(1):142-158. [19] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[C]//ECCV 2014:Proceedings of the 2014 European Conference on Computer Vision. Berlin:Springer, 2014:346-361. [20] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE, 2015:1440-1448. [21] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2015:3431-3440. [22] 纪祥虎, 高思聪, 黄志标, 等. 基于Centripetal CatmullRom曲线的经食道超声心动图左心室分割方法[J]. 四川大学学报(工程科学版), 2016, 48(5):84-90. (JI X H, GAO S C, HUANG Z B, et al. Left ventricle segmentation in transesophageal echocardiography based on Centripetal CatmullRom curve[J]. Journal of Sichuan University (Engineering Science Edition), 2016, 48(5):84-90.) |