[1] REN X F, BO L F. Discriminatively trained sparse code gradients for contour detection[C]//NIPS 2012:Proceedings of the 25th International Conference on Neural Information Processing Systems. North Miami Beach, FL, USA:Curran Associates, 2012, 1:584-592.
[2] 张广燕, 王俊平, 邢润森,等.PSLIP新模型及在边缘检测和图像增强中的应用[J].电子学报,2015,43(2):377-382.(ZHANG G Y, WANG J P, XING R S, et al. A new PSLIP model and its application in edge detection and image enhancement[J]. Acta Electronica Sinica, 2015, 43(2):377-382.)
[3] KOHLI P, LADICKY L, TORR P H S. Robust higher order potentials for enforcing label consistency[J]. International Journal of Computer Vision, 2009, 82(3):302-324.
[4] 石美红,李青,赵雪青,等.一种基于保角相位的图像边缘检测新方法[J].电子与信息学报,2015,37(11):2594-2600.(SHI M H, LI Q, ZHAO X Q, et al. A new approach for image edge detection based on conformal phase[J]. Journal of Electronics and Information Technology, 2015, 37(11):2594-2600.)
[5] PANTOFARU C, SCHMID C, HERBERT M. Object recognition by integrating multiple image segmentations[C]//ECCV 2008:Proceedings of the 10th European Conference on Computer Vision, LNCS 5304. Berlin:Springer, 2008:481-494.
[6] FELDMAN J A, FELDMAN G M, FALK G, et al. The Stanford hand-eye project[C]//IJCAI'69:Proceedings of the 1st International Joint Conference on Artificial Intelligence. San Francisco, CA:Morgan Kaufmann, 1969:521-526.
[7] CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6):679-698.
[8] KONISHI S, YUILLE A L, COUGHLAN J M, et al. Statistical edge detection:learning and evaluating edge cues[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(1):57-74.
[9] MARTIN D R, FOWLKES C C, MALIK J. Learning to detect natural image boundaries using local brightness, color, and texture cues[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(5):530-549.
[10] GANIN Y, LEMPITSKY V. N4-Fields:neural network nearest neighbor fields for image transforms[C]//Proceedings of the 2014 Asian Conference on Computer Vision, LNCS 9004. Berlin:Springer, 2014:536-551.
[11] SHEN W, WANG X G, WANG Y, et al. DeepContour:a deep convolutional feature learned by positive-sharing loss for contour detection[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2015:3982-3991.
[12] BERTASIUS G, SHI J, TORRESANI L. DeepEdge:a multi-scale bifurcated deep network for top-down contour detection[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2015:4380-4389.
[13] XIE S, TU Z. Holistically-nested edge detection[J]. International Journal of Computer Vision, 2017, 125(1/2/3):3-18.
[14] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651.
[15] LEE C-Y, XIE S, GALLAGHER P, et al. Deeply-supervised nets[EB/OL].[2019-01-02]. https://arxiv.org/pdf/1409.5185.pdf.
[16] LIU Y, CHENG M, HU X, et al. Richer convolutional features for edge detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2017:5872-5881.
[17] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2018-08-12]. https://arxiv.org/pdf/1409.1556.pdf.
[18] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[EB/OL].[2018-08-12]. https://arxiv.org/pdf/1709.01507.pdf.
[19] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL].[2018-08-12]. https://arxiv.org/pdf/1511.07122.pdf.
[20] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2016:770-778.
[21] NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines[C]//ICML'10:Proceedings of the 27th International Conference on Machine Learning. Madison, WI:Omnipress, 2010:807-814.
[22] MARTIN D R, FOWLKES C C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//ICCV 2001:Proceedings of the 8th IEEE International Conference on Computer Vision. Washington DC:IEEE Computer Society, 2001, 2:416-423.
[23] MOTTAGHI R, CHEN X, LIU X, et al. The role of context for object detection and semantic segmentation in the wild[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington DC:IEEE Computer Society, 2014:891-898.
[24] FARABET C, COUPRIE C, NAJMAN L, et al. Learning hierarchical features for scene labeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8):1915-1929.
[25] 刘胜男,宁纪锋. 基于超像素的点互信息边界检测算法[J]. 计算机应用, 2016, 36(8):2296-2300. (LIU S N, NING J F. Super-pixel based pointwise mutual information boundary detection algorithm[J]. Journal of Computer Applications, 2016, 36(8):2296-2300.)
[26] DOLLÁR P, ZITNICK C L. Fast edge detection using structured forests[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(8):1558-1570.
[27] ZITNICK C L, DOLLÁR P. Edge boxes:locating object proposals from edges[C]//Proceedings of the 2014 European Conference on Computer Vision, LNCS 8693. Berlin:Springer, 2014:391-405. |