[1] FENG R Y, TIAN T, LI X, et al. Rolling guidance based scaled-aware spatial sparse unmixing for hyperspectral remote sensing imagery[C]//Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium. Piscataway,NJ:IEEE, 2018:4273-4276.
[2] 彭倩.基于非负矩阵分解的高光谱图像解混研究[D].北京:中国科学院大学(中国科学院遥感与数字地球研究所),2017:1-10.(PENG Q.Hyperspectral unmixing based on constrained nonnegative matrix factorization[D]. Beijing:University of Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences), 2017:1-10.)
[3] HEYLEN R, BURAZEROVIC D, SCHEUNDERS P. Non-linear spectral unmixing by geodesic simplex volume maximization[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3):534-542.
[4] 王天成,刘相振,董泽政,等.一种自适应鲁棒最小体积高光谱解混算法[J].自动化学报,2017,43(12):2141-2159.(WANG T C, LIU X Y, DONG Z Z, et al. A robust minimum volume based algorithm with automatically estimating regularization parameters for hyperspectral unmixing[J]. Acta Automatica Sinica, 2017, 43(12):2141-2159.)
[5] 聂明钰.高光谱图像线性解混算法研究[D].济南:山东大学,2016. (NIE M Y. Research on hyperspectral image linear unmixing algorithm[D]. Jinan:Shandong University, 2016.)
[6] 袁博.空间与谱间相关性分析的NMF高光谱解混[J].遥感学报,2018,22(2):265-276.(YUAN B. NMF hyperspectral unmixing algorithm combined with spatial and spectral correlation analysis[J]. Journal of Remote Sensing, 2018, 22(2):265-276.)
[7] 贾志成,薛允艳,陈雷,等.基于去噪降维和蝙蝠优化的高光谱图像盲解混算法[J].光子学报,2016,45(5):106-115.(JIA Z C, XUE Y Y, CHEN L, et al. Blind separation algorithm for hyperspectral image based on the denoising reduction and the bat optimization[J]. Acta Photonica Sinica, 2016, 45(5):112-115.)
[8] 尹凤.高光谱线性解混的理论与方法及应用研究[D].成都:成都理工大学,2017:20-28.(YIN F. Study on the theory and method of linear hyperspectral unmixing and its application[D]. Chengdu:Chengdu University of Technology, 2017:20-28.)
[9] 孔繁锵,卞陈鼎,李云松等.非凸稀疏低秩约束的高光谱解混方法[J].西安电子科技大学学报(自然科学版),2016,43(6):116-121.(KONG F Q, BIAN C D, LI Y S, et al. Hyperspectral unmixing method based on the non-cinvex sparse and low-rank constraints[J]. Journal of Xidian University (Natural Science), 2016, 43(6):116-121.)
[10] 郭文骏.基于联合稀疏表示的高光谱图像解混方法研究[D].南京:南京航空航天大学,2016:1-22.(GUO W J. Research on hyperspectral imagery unmixing algorithms based on simultaneous sparse represent[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016:1-22.)
[11] 陈洁,杜磊,李京,等.基于噪声白化的高光谱数据子空间维数算法[J].国土资源遥感,2017,29(2):60-66.(CHEN J, DU L, LI J, et al. Hyperspectral data subspace dimension algorithm based on noise whitening[J]. Remote Sensing for Land and Resources, 2017, 29(2):60-66.)
[12] 郑思远.面向异常检测的高光谱数据线性子空间估计[D].长沙:国防科学技术大学,2013:32-36.(ZHENG S Y. Hyperspectral linear subspace estimation for anomaly detection[D]. Changsha:National University of Defense Technology, 2013:32-36.)
[13] SUN Y L, BIOUCAS-DIAS J M, ZHANG X, et al. A new classification-oriented endmember extraction and sparse unmixing approach for hyperspectral data[C]//Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium. Piscataway, NJ:IEEE, 2017:3644-3647.
[14] ZHANG S, LI J, PLAZA J, et al. Spatial weighted sparse regression for hyperspectral image unmixing[C]//Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium. Piscataway, NJ:IEEE, 2017:225-228.
[15] WANG X, ZHONG Y, ZHANG L, et al. Spatial group sparsity regularized nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11):6287-6304.
[16] ERTVRK A, ERTVRK S, PLAZA A. Unmixing with SLIC superpixels for hyperspectral change detection[C]//Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium. Piscataway, NJ:IEEE, 2016:3370-3373.
[17] LIN C. Projected gradient methods for nonnegative matrix factorization[J]. Neural Computation, 2007, 19(10):2756-2779.
[18] SHEN X, BAO W, QU K W. Clustering based spatial spectral preprocessing for hyperspectral unmxing[C]//Proceedings of the 4th International Conference on Communication and Information Processing. New York:ACM, 2018:313-316.
[19] HENDRIX E M T, GARCIA I, PLAZA J, et al. New minimum-volume enclosing algorithm for endmember identification and abundance estimation in hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7):2744-2757.
[20] HARTIGAN J A, WONG M A. Algorithm AS 136:a K-means clustering algorithm[J]. Journal of the Royal Statistical Society. Series C (Applied Statistics), 1979, 28(1):100-108.
[21] CORBINEAU M, CHOUZENOUX E, PESQUET J. PIPA:a new proximal interior point algorithm for large-scale convex optimization[C]//Proceedings of the 2018 International Conference on Acoustics, Speech and Signal processing. Piscataway, NJ:IEEE, 2018:1343-1347. |