[1] 燕海雄,江荻.国际音标符号的分类、名称、功能与Unicode编码[J].语言科学,2007,6(6):82-91.(YAN H X, JIANG D. The classifications, functions, Chinese names of IPA symbols and their unicode[J]. Linguistic Sciences, 2007, 6(6):82-91.) [2] 吕佳,江荻.国际音标扩展表的分类、命名与功能[J].听力学及言语疾病杂志,2013,21(6):665-668.(LYU J, JIANG D. The classification, nomenclature and function of extensions to the international phonetic alphabet[J]. Journal of Audiology and Speech Pathology, 2013, 21(6):665-668.) [3] 曹雨生,徐昂.微机国际音标系统[J].民族语文,1990(1):74-79.(CAO Y S, XU A. The international phonetic alphabet system in microcomputer[J]. Minority Languages of China, 1990(1):74-79.) [4] 潘晓声.国际音标符号名称的简称[J].民族语文,2012(5):56-61.(PAN X S. The name abbreviation of international phonetic alphabet symbols[J]. Minority Languages of China, 2012(5):56-61.) [5] PADEFOGED H,石在.国际音标的一些主要特征[J].齐齐哈尔师范学院学报(哲学社会科学版),1995(2):150-153.(PADEFOGED H, SHI Z. Some major features of the international phonetic alphabet[J]. Journal of Qiqihar University (Philosophy & Social Science Edition), 1995(2):150-153.) [6] 邱立松.国际音标字符识别算法的研究[D].上海师范大学,2015:2-3.(QIU L S. Study on the recognition algorithm of international phonetic alphabet characters[D]. Shanghai:Shanghai Normal University, 2015:2-3.) [7] 张玉叶,姜彬,李开端,等.一种结合结构和统计特征的脱机数字识别方法[J].微型电脑应用,2016,32(8):76-79.(ZHANG Y Y, JIANG B, LI K D, et al. An off-line handwritten numeral recognition method combined with the statistical characteristics and structural features[J]. Microcomputer Applications, 2016, 32(8):76-79.) [8] 陈东杰,张文生,杨阳.基于深度学习的高铁接触网定位器检测与识别[J].中国科学技术大学学报,2017,47(4):320-327.(CHEN D J, ZHANG W S, YANG Y. Detection and recognition of high-speed railway catenary locator based on deep learning[J]. Journal of University of Science and Technology of China, 2017, 47(4):320-327.) [9] 白翔,杨明锟,石葆光,等.基于深度学习的场景文字检测与识别[J].中国科学:信息科学,2018,48(5):531-544.(BAI X, YANG M K, SHI B G, et al. Deep learning for scene text detection and recognition[J]. SCIENTIA SINICA Informationis, 2018, 48(5):531-544.) [10] 钟冲,徐光柱.结合前景检测和深度学习的运动行人检测方法[J].计算机与数字工程,2016,44(12):2396-2399.(ZHONG C, XU G Z. Movement pedestrian detection method combined with foreground subtraction and deep learning[J]. Computer & Digital Engineering, 2016, 44(12):2396-2399.) [11] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//NIPS 2012:Proceedings of the 25th International Conference on Neural Information Processing Systems. North Miami Beach, FL:Curran Associates Inc., 2012:1097-1105. [12] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2014:580-587. [13] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[C]//Proceedings of the 2014 European Conference on Computer Vision, LNCS 8691. Cham:Springer, 2014:346-361. [14] GIRSHICK R. Fast R-CNN[C]//ICCV 2015:Proceedings of the 2015 IEEE International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2015:1440-1448. [15] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [16] DAI J F, LI Y, HE K M, et al. R-FCN:object detection via region-based fully convolutional networks[C]//NIPS 2016:Proceedings of the 30th International Conference on Neural Information Processing Systems. North Miami Beach, FL:Curran Associates Inc., 2016:379-387. [17] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2016:779-788. [18] LIU W, ANGUELOV D, ERHAN D, et al. SSD:single shot multibox detector[C]//ECCV 2016:Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham:Springer, 2016:21-37. [19] REDMON J, FARHADI A. YOLO9000:better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2017:6517-6525. |