[1] DENG Z, LATECKI L J. Amodal detection of 3D objects:inferring 3D bounding boxes from 2D ones in RGB-depth images[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:398-406. [2] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2014:580-587. [3] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916. [4] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2015:1440-1448. [5] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards realtime object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [6] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:936-944. [7] GUPTA S, GIRSHICK R, ARBELÁEZ P, et al. Learning rich features from RGB-D images for object detection and segmentation[C]//Proceedings of the 13th European Conference on Computer Vision, LNCS 8695. Cham:Springer, 2014:345-360. [8] CHEN X, KUNDU K, ZHANG Z, et al. Monocular 3D object detection for autonomous driving[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:2147-2156. [9] CHEN X, KUNDU K, ZHU Y, et al. 3D object proposals using stereo imagery for accurate object class detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(5):1259-1272. [10] LI B, ZHANG T, XIA T. Vehicle detection from 3D lidar using fully convolutional network[EB/OL].[2019-11-12]. https://arxiv.org/pdf/1608.07916.pdf. [11] ENGELCKE M, RAO D, WANG D Z, et al. Vote3Deep:fast object detection in 3D point clouds using efficient convolutional neural networks[C]//Proceedings of the 2017 IEEE International Conference on Robotics and Automation. Piscataway:IEEE, 2017:1355-1361. [12] LI B. 3D fully convolutional network for vehicle detection in point cloud[C]//Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE, 2017:1513-1518. [13] WANG D Z, POSNER I. Voting for voting in online point cloud object detection[C]//Proceedings of the Robotics:Science and Systems. Rome, Italy, Robotics:Science and Systems Foundation, 2015:1-8. [14] QI C R, SU H, KAICHUN M, et al. PointNet:deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:77-85. [15] QI C R, YI L, SU H, et al. PointNet++:deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc., 2017:5099-5108. [16] CHEN X, MA H, WAN J, et al. Multi-view 3D object detection network for autonomous driving[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:6526-6534. [17] ZHOU Y, TUZEL O. VoxelNet:end-to-end learning for point cloud based 3D object detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:4490-4499. [18] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2012:3354-3361. [19] QI C R, LIU W, WU C, et al. Frustum PointNets for 3D object detection from RGB-D data[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:918-927. [20] SONG S, XIAO J. Deep sliding shapes for amodal 3D object detection in RGB-D images[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:808-816. [21] 骆健,蒋旻,刘星,等. 基于多模态深度学习的RGB-D物体识别[J]. 计算机工程与设计, 2017, 38(6):1624-1629.(LUO J, JIANG M, LIU X, et al. RGB-D object recognition based on multimodal deep learning[J]. Computer Engineering and Design, 2017, 38(6):1624-1629.) [22] 王旭娇,马杰,王楠楠,等. 基于图卷积网络的深度学习点云分类模型[J]. 激光与光电子学进展, 2019, 56(21):No. 211004. (WANG X J, MA J, WANG N N, et al. Deep learning model for point clouds classification based on graph convolutional network[J]. Laser and Optoelectronics Progress, 2019, 56(21):No. 211004.) |