[1] DONG C,LOY C C,HE K,et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(2):295-307. [2] KIM J,LEE J K,LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:1646-1654. [3] KIM J,KWON LEE J,MU LEE K. Deeply-recursive convolutional network for image super-resolution[C]//Proceedings of the 2016 IEEE International Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:1637-1645. [4] SHI W,CABALLERO J,HUSZÁR F,et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:1874-1883. [5] LAI W S,HUANG J B,AHUJA N,et al. Deep Laplacian pyramid networks for fast and accurate super-resolution[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:5835-5843. [6] LIM B,SON S,KIM H,et al. Enhanced deep residual networks for single image super-resolution[C]//Proceeding of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE,2017:1132-1140. [7] LEDIG C,THEIS L,HUSZÁR F,et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:105-114. [8] HARIS M,SHAKHNAROVICH G,UKITA N. Deep back-projection networks for super-resolution[C]//Proceeding of the 2018 IEEE/CVF International Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:1664-1673. [9] ZHANG Y,LI K,LI K,et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the 15th European Conference on Computer Vision,LNCS 11211. Cham:Springer,2018:294-310. [10] 邵文泽, 韦志辉. 基于各向异性MRF建模的多帧图像变分超分辨率重建[J]. 电子学报,2009,37(6):1256-1263.(SHAO W Z,WEI Z H. Multi-frame super-resolution reconstruction based on anisotropic Markov random field modeling[J]. Acta Electronica Sinica,2009,37(6):1256-1263.) [11] 李展, 张庆丰, 孟小华, 等. 多分辨率图像序列的超分辨率重建[J]. 自动化学报,2012,38(11):1804-1814.(LI Z,ZHANG Q F,MENG X H,et al. Super-resolution reconstruction of multi-resolution image sequences[J]. Acta Automatica Sinica,2012,38(11):1804-1814.) [12] 任福全, 邱天爽, 韩军, 等. 基于二阶广义全变差的多帧图像超分辨率重建[J]. 电子学报,2015,43(7):1275-1280.(REN F Q,QIU T S,HAN J,et al. Multiframe image super resolution based on second order total generalized variation[J]. Acta Electronica Sinica,2015,43(7):1275-1280.) [13] 严宏海, 卜方玲, 徐新. 基于结构张量的视频超分辨率算法[J]. 计算机应用,2016,36(7):1944-1948,1987.(YAN H H, PU F L,XU X. Video super-resolution algorithm based on structure tensor[J]. Journal of Computer Applications,2016,36(7):1944-1948,1987.) [14] 吉晓红, 熊淑华, 何小海, 等. 多阶导数自适应视频超分辨率重建[J]. 计算机应用,2016,36(4):1092-1095,1150.(JI X H, XIONG S H,HE X H,et al. Adaptive video super-resolution reconstruction algorithm based on multi-order derivative[J]. Journal of Computer Applications,2016,36(4):1092-1095,1150.) [15] 孙琰玥, 何小海, 宋海英, 等. 一种用于视频超分辨率重建的块匹配图像配准方法[J]. 自动化学报,2011,37(1):37-43. (SUN Y Y,HE X H,SONG H Y,et al. A block-matching image registration algorithm for video super-resolution reconstruction[J]. Acta Automatica Sinica,2011,37(1):37-43.) [16] TIMOFTE R,AGUSTSSON E,VAN GOOL L,et al. NTIRE 2017 challenge on single image super-resolution:methods and results[C]//Proceeding of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE, 2017:1110-1121. [17] HE K,ZHANG X,REN S,et al. Delving deep into rectifiers:surpassing human-level performance on ImageNet classification[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE,2015:1026-1034. [18] KINGMA D P,BA J. Adam:a method for stochastic optimization[EB/OL].[2018-12-22]. https://arxiv.org/pdf/1412.6980.pdf. [19] YE Y,SHAN J,BRUZZONE L,et a1. Robust registration of multimodal remote sensing images based on structural similarity[J]. IEEE Transactions on Geoscience and Remote Sensing,2017,55(5):2941-2958. [20] TAI Y,YANG J,LIU X,et al. MemNet:a persistent memory network for image restoration[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:4539-4547. [21] DONG C,LOY C C,TANG X. Accelerating the super-resolution convolutional neural network[C]//Proceedings of the 14th European Conference on Computer Vision,LNCS 9906. Cham:Springer,2016:391-407. [22] BEVILACQUA M,ROUMY A,GUILLEMOT C,et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]//Proceeding of the 2012 British Machine Vision Conference. Durham:BMVA Press,2012:No. 135. [23] ZEYDE R,ELAD M,PROTTER M. On single image scale-up using sparse-representations[C]//Proceeding of the 7th International Conference on Curves and Surfaces,LNCS 6920. Berlin:Springer,2010:711-730. [24] MARTIN D,FOWLKES C,TAL D,et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceeding of the 8th IEEE International Conference on Computer Vision. Piscataway:IEEE,2001:416-423. [25] HUANG J B,SINGH A,AHUJA N. Single image super-resolution from transformed self-exemplars[C]//Proceedings of the 2015 Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:5197-5206. [26] WANG Z,LIU D,YANG J,et al. Deep networks for image superresolution with sparse prior[C]//Proceeding of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2015:370-378. [27] ZHANG K,ZUO W,ZHANG L. Learning a single convolutional super-resolution network for multiple degradations[C]//Proceeding of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:3262-3271. [28] ZHANG Y,TIAN Y,KONG Y,et al. Residual dense network for image super-resolution[C]//Proceeding of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:2472-2481. |