[1] GLASNER D,BAGON S,IRANI M. Super-resolution from a single image[C]//Proceedings of the IEEE 12th International Conference on Computer Vision. Piscataway:IEEE,2009:349-356. [2] IRANI M,PELEG S. Improving resolution by image registration[J]. CVGIP:Graphical Models and Image Processing,1991,53(3):231-239. [3] 孔玲莉, 黄华, 齐春, 等. 图像超分辨率研究的最新进展[J]. 光学技术,2004,30(3):374-377.(KONG L L,HUANG H,QI C, et al. Recent development in super-resolution[J]. Optica:Technique,2004,30(3):374-377.) [4] 江静, 张雪松. 图像超分辨率重建算法综述[J]. 红外技术, 2012,34(1):24-30.(JIANG J,ZHANG X S,A review of superresolution reconstruction algorithms[J]. Infrared Technology, 2012,34(1):24-30.) [5] HA V K,REN J,XU X,et al. Deep learning based single image super-resolution:a survey[J]. International Journal of Automation and Computing,2019,16(4):413-426. [6] ZEILER M D,FERGUS R. Visualizing and understanding convolutional networks[C]//Proceedings of the 13th European Conference on Computer Vision, LNCS 8689. Cham:Springer, 2014:818-833. [7] DONG C,LOY C C,HE K,et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(2):295-307. [8] KIM J,LEE J K,LEE K M. Deeply-recursive convolutional network for image super-resolution[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:1637-1645. [9] KIM J,LEE J K,LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:1646-1654. [10] WANG X,YU K,WU S,et al. ESRGAN:enhanced super-resolution generative adversarial networks[C]//Proceedings of the 15th European Conference on Computer Vision,LNCS 11133. Cham:Springer,2018:63-79. [11] MAO X,SHEN C,YANG Y. Image restoration using convolutional auto-encoders with symmetric skip connections[C]//NIPS 2016:Advances in Neural Information Processing Systems 29. North Miami Beach,FL:Curran Associates Inc.,2016:2802-2810. [12] ZHANG Y,LI K,LI K,et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the 15th European Conference on Computer Vision,LNCS 11211. Cham:Springer,2018:294-310. [13] HUI Z,WANG X,GAO X. Fast and accurate single image superresolution via information distillation network[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:723-731. [14] 邵保泰, 汤心溢, 金璐, 等. 基于生成对抗网络的单帧红外图像超分辨算法[J]. 红外与毫米波学报,2018,37(4):427-432. (SHAO B T,TANG X Y,JIN L,et al. Single frame infrared image super-resolution algorithm based on generative adversarial nets[J]. Journal of Infrared and Millimeter Waves,2018,37(4):427-432.) [15] 徐军, 刘慧, 郭强, 等. 结合反卷积的CT图像超分辨重建网络[J]. 计算机辅助设计与图形学学报,2018,30(11):2084-2092(XU J,LIU H,GUO Q,et al. Super-resolution reconstruction of CT images using neural network combined with deconvolution[J]. Journal of Computer-Aided Design and Computer Graphics,2018, 30(11):2084-2092.) [16] 朱福珍, 刘越, 黄鑫, 等. 改进的稀疏表示遥感图像超分辨重建[J]. 光学精密工程,2019,27(3):718-725.(ZHU F Z,LIU Y, HUANG X,et al. Remote sensing image super-resolution based on improved sparse representation[J]. Optical Precision Engineering,2019,27(3):718-725.) [17] 邓承志. 图像稀疏表示理论及其应用研究[D]. 武汉:华中科技大学,2008:18.(DENG C Z. Image sparse representation theory and its application[D]. Wuhan:Huazhong University of Science and Technology,2008:18.) [18] ZEILER M D,KRISHNAN D,TAYLOR G W,et al. Deconvolutional networks[C]//Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2010:2528-2535. [19] 陈扬钛, 钟平. 基于L1正则化反卷积网络的遥感图像表述与复原方法[J]. 数字技术与应用,2011(5):158-160,184.(CHEN Y T,ZHONG P. Remote sensing image representation and restoration method based on L1 regularized deconvolution network[J]. Digital Technology and Application, 2011(5):158-160,184.) [20] SHELHAMER E, LONG J,DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, Piscataway:IEEE, 2017,39(4):640-651. [21] XU L,REN J S J,LIU C,et al. Deep convolutional neural network for image deconvolution[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2014:1790-1798. [22] RADFORD A,METZ L,CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL].[2019-09-12]. https://arxiv.org/pdf/1511.06434.pdf. [23] LECUN Y L,BOTTOU L,BENGIO Y,et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE,1998,86(11):2278-2324. [24] KRIZHEVSKY A,SUTSKEVER I,HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2012:1097-1105. [25] SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-09-12]. https://arxiv.org/pdf/1409.1556.pdf. [26] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:770-778. [27] YU F,KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL].[2019-09-12]. https://arxiv.org/pdf/1511.07122.pdf. [28] KALCHBRENNER N,ESPEHOLT L,SIMONYAN K,et al. Neural machine translation in linear time[EB/OL].[2019-09-12]. https://arxiv.org/pdf/1610.10099.pdf. [29] VAN DEN OORD A,DIELEMAN S,ZEN H,et al. WaveNet:a generative model for raw audio[EB/OL].[2019-09-08]. https://arxiv.org/pdf/1609.03499.pdf. [30] AHARON M,ELAD M,BRUCKSTEIN A. K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing,2006,54(11):4311-4322. [31] HERVÉ A,WILLIAMS L J. Principal component analysis[J]. WIREs Computational Statistics,2010,2(4):433-459. [32] RHEE S,KANG M G. Discrete cosine transform based regularized high-resolution image reconstruction algorithm[J]. Optical Engineering,1999,38(8):1348-1356. [33] NAIR V,HINTON G E. Rectified linear units improve restricted Boltzmann machines[C]//Proceedings of the 27th International Conference on Machine Learning. Madison, WI:Omnipress, 2010:807-814. [34] MAO X,SHEN C,YANG Y,et al. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2016:2810-2818. [35] 沈恒范. 概率论与数理统计教程[M]. 北京:高等教育出版社, 2006:56-58.(SHEN H F. Probability Theory and Mathematical Statistics Course[M]. Beijing:Higher Education Press,2006:56-58.) [36] TURAGA D S,CHEN Y,CAVIEDES J,et al. No reference PSNR estimation for compressed pictures[J]. Signal Processing:Image Communication,2004,19(2):173-184. [37] KINGMA D P,BA J. Adam:a method for stochastic optimization[EB/OL].[2019-09-12]. https://arxiv.org/pdf/1412.6980.pdf. [38] MARTIN D,FOWLKES C,TAL D,et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings of the 8th IEEE International Conference on Computer Vision. Piscataway:IEEE,2002:416-423. [39] YANG J,WRIGHT J,HUANG T S,et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing,2010,19(11):2861-2873. [40] TIMOFTE R,DE SMET V,VAN GOOL L. A+:adjusted anchored neighborhood regression for fast super-resolution[C]//Proceedings of the 12th Asian Conference on Computer Vision,LNCS 9006. Cham:Springer,2014:111-126. [41] BEVILACQUA M,ROUMY A,GUILLEMOT C,et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]//Proceedings of the 2012 British Machine Vision Conference. Durham:BMVA Press,2012:No. 135. [42] ZEYDE R,ELAD M,PROTTER M. On single image scale-up using sparse-representations[C]//Proceedings of the 7th International Conference on Curves and Surfaces, LNCS 6920. Berlin:Springer,2010:711-730. [43] HUANG J B,SINGH A,AHUJA N. Single image super-resolution from transformed self-exemplars[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:5197-5206. [44] KEYS R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics Speech,and Signal Processing,1981,29(6):1153-1160. |